河南省駐馬店市名校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
河南省駐馬店市名校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
河南省駐馬店市名校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
河南省駐馬店市名校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
河南省駐馬店市名校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省駐馬店市名校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法正確的是()A.小于的角是銳角 B.鈍角是第二象限的角C.第二象限的角大于第一象限的角 D.若角與角的終邊相同,則2.已知,那么等于()A. B. C. D.53.(卷號)2397643038875648(題號)2398229448728576(題文)已知直線、,平面、,給出下列命題:①若,,且,則;②若,,且,則;③若,,且,則;④若,,且,則.其中正確的命題是()A.①② B.③④ C.①④ D.②③4.設(shè)數(shù)列是等差數(shù)列,是其前項和,且,,則下列結(jié)論中錯誤的是()A. B. C. D.與均為的最大值5.若,則函數(shù)的最小值是()A. B. C. D.6.矩形中,,若在該矩形內(nèi)隨機(jī)投一點,那么使得的面積不大于3的概率是()A. B. C. D.7.下列函數(shù)中,在區(qū)間上單調(diào)遞增的是()A. B. C. D.8.設(shè)點是棱長為的正方體的棱的中點,點在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點到點的最短距離是()A. B. C. D.9.若某市所中學(xué)參加中學(xué)生合唱比賽的得分用莖葉圖表示(如圖),其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的中位數(shù)是()A.91 B.91.5C.92 D.92.510.角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.等比數(shù)列的公比為,其各項和,則______________.12.已知數(shù)列{an}的前n項和為Sn,滿足:a2=2a1,且Sn=+1(n≥2),則數(shù)列{an}的通項公式為_______.13.在數(shù)列中,,是其前項和,當(dāng)時,恒有、、成等比數(shù)列,則________.14.過點作圓的切線,則切線的方程為_____.15.已知圓:,若對于圓:上任意一點,在圓上總存在點使得,則實數(shù)的取值范圍為__________.16.已知函數(shù),關(guān)于此函數(shù)的說法:①為周期函數(shù);②有對稱軸;③為的對稱中心;④;正確的序號是_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在公差不為零的等差數(shù)列中,,且成等比數(shù)列.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.18.已知數(shù)列an滿足an+1=2an(1)求證:數(shù)列bn(2)求數(shù)列an的前n項和為S19.已知,是平面內(nèi)兩個不共線的非零向量,,,且,,三點共線.(1)求實數(shù)的值;(2)若,,求的坐標(biāo);(3)已知,在(2)的條件下,若,,,四點按逆時針順序構(gòu)成平行四邊形,求點的坐標(biāo).20.已知為平面內(nèi)不共線的三點,表示的面積(1)若求;(2)若,,,證明:;(3)若,,,其中,且坐標(biāo)原點恰好為的重心,判斷是否為定值,若是,求出該定值;若不是,請說明理由.21.已知向量,,函數(shù).(1)若,,求的值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

可通過舉例的方式驗證選項的對錯.【題目詳解】A:負(fù)角不是銳角,比如“”的角,故錯誤;B:鈍角范圍是“”,是第二象限的角,故正確;C:第二象限角取“”,第一象限角取“”,故錯誤;D:當(dāng)角與角的終邊相同,則.故選B.【題目點撥】本題考查任意角的概念,難度較易.2、B【解題分析】

因為,所以,故選B.3、C【解題分析】

逐一判斷各命題的正誤,可得出結(jié)論.【題目詳解】對于命題①,若,,且,則,該命題正確;對于命題②,若,,且,則與平行或相交,該命題錯誤;對于命題③,若,,且,則與平行、垂直或斜交,該命題錯誤;對于命題④,若,,且,則,該命題正確.故選:C.【題目點撥】本題考查線面、面面位置關(guān)系有關(guān)命題真假的判斷,在判斷時,可充分利用線面、面面平行或垂直的判定與性質(zhì)定理,也可以結(jié)合幾何體模型進(jìn)行判斷,考查推理能力,屬于中等題.4、C【解題分析】

根據(jù)等差數(shù)列的性質(zhì),結(jié)合,,分析出錯誤結(jié)論.【題目詳解】由于,,所以,,,所以,與均為的最大值.而,所以,所以C選項結(jié)論錯誤.故選:C.【題目點撥】本小題主要考查等差數(shù)列的性質(zhì),考查分析與推理能力,屬于基礎(chǔ)題.5、B【解題分析】

直接用均值不等式求最小值.【題目詳解】當(dāng)且僅當(dāng),即時,取等號.故選:B【題目點撥】本題考查利用均值不等式求函數(shù)最小值,屬于基礎(chǔ)題.6、C【解題分析】

先求出的點的軌跡(一條直線),然后由面積公式可知時點所在區(qū)域,計算其面積,利用幾何概型概率公式計算概率.【題目詳解】設(shè)到的距離為,,則,如圖,設(shè),則點在矩形內(nèi),,,∴所求概率為.故選C.【題目點撥】本題考查幾何概型概率.解題關(guān)鍵是確定符合條件點所在區(qū)域及其面積.7、A【解題分析】

判斷每個函數(shù)在上的單調(diào)性即可.【題目詳解】解:在上單調(diào)遞增,,和在上都是單調(diào)遞減.故選:A.【題目點撥】考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和反比例函數(shù)的單調(diào)性.8、B【解題分析】

以為原點,為軸為軸為軸,建立空間直角坐標(biāo)系,計算三個平面的法向量,根據(jù)夾角相等得到關(guān)系式:,再利用點到直線的距離公式得到答案.【題目詳解】`以為原點,為軸為軸為軸,建立空間直角坐標(biāo)系.則易知:平面的法向量為平面的法向量為設(shè)平面的法向量為:則,取平面分別與平面和平面所成的銳二面角相等或看作平面的兩條平行直線,到的距離.根據(jù)點到直線的距離公式得,點到點的最短距離都是:故答案為B【題目點撥】本題考查了空間直角坐標(biāo)系,二面角,最短距離,意在考查學(xué)生的計算能力和空間想象能力.9、B【解題分析】試題分析:中位數(shù)為中間的一個數(shù)或兩個數(shù)的平均數(shù),所以中位數(shù)為考點:莖葉圖10、C【解題分析】

由,即可判斷.【題目詳解】,則與的終邊相同,則角的終邊落在第三象限故選:C【題目點撥】本題主要考查了判斷角的終邊所在象限,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用等比數(shù)列各項和公式可得出關(guān)于的方程,解出即可.【題目詳解】由于等比數(shù)列的公比為,其各項和,可得,解得.故答案為:.【題目點撥】本題考查等比數(shù)列中基本量的計算,利用等比數(shù)列各項和公式列等式是關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.12、【解題分析】

推導(dǎo)出a1=1,a2=2×1=2,當(dāng)n≥2時,an=Sn﹣Sn﹣1,即,由此利用累乘法能求出數(shù)列{an}的通項公式.【題目詳解】∵數(shù)列{an}的前n項和為Sn,滿足:a2=2a1,且Sn1(n≥2),∴a2=S2﹣S1=a2+1﹣a1,解得a1=1,a2=2×1=2,∴,解得a3=4,,解得a4=6,當(dāng)n≥2時,an=Sn﹣Sn﹣1,即,∴n≥2時,22n﹣2,∴數(shù)列{an}的通項公式為.故答案為:.【題目點撥】本題考查數(shù)列的通項公式的求法,考查數(shù)列的通項公式與前n項和公式的關(guān)系,考查運(yùn)算求解能力,分類討論是本題的易錯點,是基礎(chǔ)題.13、.【解題分析】

由題意得出,當(dāng)時,由,代入,化簡得出,利用倒數(shù)法求出的通項公式,從而得出的表達(dá)式,于是可求出的值.【題目詳解】當(dāng)時,由題意可得,即,化簡得,得,兩邊取倒數(shù)得,,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,,,則,因此,,故答案為:.【題目點撥】本題考查數(shù)列極限的計算,同時也考查了數(shù)列通項的求解,在含的數(shù)列遞推式中,若作差法不能求通項時,可利用轉(zhuǎn)化為的遞推公式求通項,考查分析問題和解決問題的能力,綜合性較強(qiáng),屬于中等題.14、或【解題分析】

求出圓的圓心與半徑分別為:,,分別設(shè)出直線斜率存在與不存在情況下的直線方程,利用點到直線的距離等于半徑即可得到答案.【題目詳解】由圓的一般方程得到圓的圓心和半徑分別為;,;(1)當(dāng)過點的切線斜率不存在時,切線方程為:,此時圓心到直線的距離,故不與圓相切,不滿足題意;(2)當(dāng)過點的切線的斜率存在時,設(shè)切線方程為:,即為;由于直線與圓相切,所以圓心到切線的距離等于半徑,即,解得:或,所以切線的方程為或;綜述所述:切線的方程或【題目點撥】本題考查過圓外一點求圓的切線方程,解題關(guān)鍵是設(shè)出切線方程,利用圓心到切線的距離等于半徑得到關(guān)系式,屬于中檔題.15、【解題分析】

由,知為圓的切線,所以兩圓外離,即圓心距大于兩半徑之和,代入方程即可?!绢}目詳解】由,知為圓的切線,即在圓上任意一點都可以向圓作切線,當(dāng)兩圓外離時,滿足條件,所以,,即,化簡,得:,解得:或.【題目點撥】和圓半徑所成夾角為,即是圓的切線,兩圓外離表示圓心距大于兩半徑之和。16、①②④【解題分析】

由三角函數(shù)的性質(zhì)及,分別對各選項進(jìn)行驗證,即可得出結(jié)論.【題目詳解】解:由函數(shù),可得①,可得為周期函數(shù),故①正確;②由,,故,是偶函數(shù),故有對稱軸正確,故②正確;③為偶數(shù)時,,為奇數(shù)時,故不為的對稱中心,故③不正確;④由,可得正確,故④正確.故答案為:①②④.【題目點撥】本題主要考查三角函數(shù)的值域、周期性、對稱性等相關(guān)知識,綜合性大,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)先根據(jù)已知求出公差d,即得的通項公式;(2)先證明數(shù)列是等比數(shù)列,再利用等比數(shù)列的前n項和公式求.【題目詳解】(1)設(shè)等差數(shù)列的公差為,由已知得,則,將代入并化簡得,解得,(舍去).所以.(2)由(1)知,所以,所以,所以數(shù)列是首項為2,公比為4的等比數(shù)列.所以.【題目點撥】本題主要考查等差數(shù)列通項的求法,考查等比數(shù)列性質(zhì)的證明和前n項和的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.18、(1)證明見解析;(2)S【解題分析】

(1)計算得到bn+1bn(2)根據(jù)(1)知an【題目詳解】(1)因為bn+1b所以數(shù)列bn(2)因為bn=aSn【題目點撥】本題考查了等比數(shù)列的證明,分組求和,意在考查學(xué)生的計算能力和對于數(shù)列方法的靈活運(yùn)用.19、(1);(2);(3).【解題分析】

(1)根據(jù),,三點共線,列出向量與共線的表達(dá)式,然后根據(jù)坐標(biāo)求解即可;(2)根據(jù),列坐標(biāo)即可求解;(3)根據(jù)平行四邊形可以推出對邊的向量相等,根據(jù)向量相等代入坐標(biāo)求解即可求出點的坐標(biāo).【題目詳解】(1),∵,,三點共線,∴存在實數(shù),使得,即,得,∵,是平面內(nèi)兩個不共線的非零向量,∴,解得,;(2);(3)∵,,,四點按逆時針順序構(gòu)成平行四邊形,∴,設(shè),則,∵,∴,解得,即點的坐標(biāo)為.【題目點撥】本題主要考查了平面向量共線,平面向量的線性運(yùn)算,平面向量的相等,屬于一般題.20、(1);(2)詳見解析;(3)是定值,值為,理由見解析.【解題分析】

(1)已知三點坐標(biāo),則可以求出三邊長度及對應(yīng)向量,由向量數(shù)量積公式可以求出夾角余弦值,從而算出正弦值,利用面積公式完成作答;(2)和(1)的方法一樣,唯獨不同在于(1)是具體值,而(2)中是參數(shù),我們可以把參數(shù)當(dāng)做整體(視為已知)能處理;(3)由恰好為的正心可以獲取,而可以借助(2)的公式直接運(yùn)用,本題也就完成作答.【題目詳解】(1)因為,所以,,所以因為,所以,所以(2)因為,所以所以因為所以所以所以;(3)因為為的重心,所以由(1)可知又因為為的重心,所以,平方相加得:,即,所以所以,所以是定值,值為【題目點撥】已知三角形三點,去探究三角形面積問題,通過向量數(shù)量積為載體,算出相對應(yīng)邊所在向量的模長、夾角余弦值,進(jìn)一步算出正弦值,從而算出面積,這三問存在層層遞進(jìn)的過程,從特殊到一般慢慢設(shè)問,非常好的一個探究性習(xí)題.21、(1);(2)【解題分析】

(1)利用數(shù)量積公式結(jié)合二倍角公式,輔助角公式化簡函數(shù)解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論