江蘇省鹽城市東臺市2024屆數(shù)學高一第二學期期末統(tǒng)考試題含解析_第1頁
江蘇省鹽城市東臺市2024屆數(shù)學高一第二學期期末統(tǒng)考試題含解析_第2頁
江蘇省鹽城市東臺市2024屆數(shù)學高一第二學期期末統(tǒng)考試題含解析_第3頁
江蘇省鹽城市東臺市2024屆數(shù)學高一第二學期期末統(tǒng)考試題含解析_第4頁
江蘇省鹽城市東臺市2024屆數(shù)學高一第二學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市東臺市2024屆數(shù)學高一第二學期期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示:在正方體中,設直線與平面所成角為,二面角的大小為,則為()A. B. C. D.2.等差數(shù)列中,,且,且,是其前項和,則下列判斷正確的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于3.如圖,在中,已知D是邊延長線上一點,若,點E為線段的中點,,則()A. B. C. D.4.七巧板是我國古代勞動人民發(fā)明的一種智力玩具,由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自黑色部分的概率為()A. B. C. D.5.點是空間直角坐標系中的一點,過點作平面的垂線,垂足為,則點的坐標為()A.(1,0,0) B. C. D.6.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”7.已知數(shù)列2008,2009,1,-2008,-2009…這個數(shù)列的特點是從第二項起,每一項都等于它的前后兩項之和,則這個數(shù)列的前2019項之和S2019A.1 B.2010 C.4018 D.40178.過兩點A(4,y),B(2,-3)的直線的傾斜角是135°,則y等于()A.1 B.5 C.-1 D.-59.點,,直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或10.已知點,,則與向量方向相同的單位向量為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設x、y滿足約束條件,則的取值范圍是______.12.已知關于的不等式的解集為,則__________.13.在平面直角坐標系xOy中,角α與角β均以Ox為始邊,它們的終邊關于y軸對稱.若,則=___________.14.設無窮等比數(shù)列的公比為,若,則__________________.15.已知等比數(shù)列的公比為,它的前項積為,且滿足,,,給出以下四個命題:①;②;③為的最大值;④使成立的最大的正整數(shù)為4031;則其中正確命題的序號為________16.在中,內(nèi)角,,所對的邊分別為,,,,且,則面積的最大值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,是實常數(shù).(1)當時,判斷函數(shù)的奇偶性,并給出證明;(2)若是奇函數(shù),不等式有解,求的取值范圍.18.在中,角A,B,C的對邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.19.如圖,函數(shù),其中的圖象與y軸交于點.(1)求的值;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求使的x的集合.20.數(shù)列中,,(為常數(shù),1,2,3,…),且.(1)求c的值;(2)求證:①;②;(3)比較++…+與的大小,并加以證明.21.李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:單價(千元)銷量(百件)已知.(1)若變量具有線性相關關系,求產(chǎn)品銷量(百件)關于試銷單價(千元)的線性回歸方程;(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.(參考公式:線性回歸方程中的估計值分別為)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

連結BC1,交B1C于O,連結A1O,則∠BA1O是直線A1B與平面A1DCB1所成角θ1,由BC⊥DC,B1C⊥DC,知∠BCB1是二面角A1﹣DC﹣A的大小θ2,由此能求出結果.【題目詳解】連結BC1,交B1C于O,連結A1O,∵在正方體ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直線A1B與平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故選A.【題目點撥】本題考查線面角、二面角的求法,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.2、C【解題分析】

由,且可得,,,,結合等差數(shù)列的求和公式即等差數(shù)列的性質(zhì)即可判斷.【題目詳解】,且,,數(shù)列的前項都是負數(shù),,,,由等差數(shù)列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故選:C.【題目點撥】本題考查等差數(shù)列前項和符號的判斷,解題時要充分結合等差數(shù)列下標和的性質(zhì)以及等差數(shù)列求和公式進行計算,考查分析問題和解決問題的能力,屬于中等題.3、B【解題分析】

由,,,,代入化簡即可得出.【題目詳解】,帶人可得,可得,故選B.【題目點撥】本題考查了向量共線定理、向量的三角形法則,考查了推理能力與計算能力,屬于中檔題.4、B【解題分析】

設正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【題目詳解】設正方形的邊長為,則陰影部分由三個小等腰直角三角形構成,則正方形的對角線長為,則等腰直角三角形的邊長為,對應每個小等腰三角形的面積,則陰影部分的面積之和為,正方形的面積為,若在此正方形中任取一點,則此點取自黑色部分的概率為,故選:B.【題目點撥】本題考查面積型幾何概型概率公式計算事件的概率,解題的關鍵在于計算出所求事件對應區(qū)域的面積和總區(qū)域的面積,考查計算能力,屬于中等題.5、B【解題分析】

根據(jù)空間直角坐標系的坐標關系,即可求得點的坐標.【題目詳解】空間直角坐標系中點過點作平面的垂線,垂足為,可知故選:B【題目點撥】本題考查了空間直角坐標系及坐標關系,屬于基礎題.6、C【解題分析】

結合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【題目詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【題目點撥】本題考查了互斥事件和對立事件的定義的運用,考查了學生對知識的理解和掌握,屬于基礎題.7、C【解題分析】

計算數(shù)列的前幾項,觀察數(shù)列是一個周期為6的數(shù)列,計算得到答案.【題目詳解】從第二項起,每一項都等于它的前后兩項之和計算數(shù)列前幾項得:2008,2009,1,-2008,-2009,-1,2008,2009,1,-2008…觀察知:數(shù)列是一個周期為6的數(shù)列每個周期和為0S故答案為C【題目點撥】本題考查了數(shù)列的前N項和,觀察數(shù)列的周期是解題的關鍵.8、D【解題分析】∵過兩點A(4,y),B(2,-3)的直線的傾斜角是135°,∴,解得。選D。9、B【解題分析】

根據(jù),在直線異側或其中一點在直線上列不等式求解即可.【題目詳解】因為直線與線段相交,所以,,在直線異側或其中一點在直線上,所以,解得或,故選B.【題目點撥】本題主要考查點與直線的位置關系,考查了一元二次不等式的解法,屬于基礎題.10、A【解題分析】

由題得,設與向量方向相同的單位向量為,其中,利用列方程即可得解.【題目詳解】由題可得:,設與向量方向相同的單位向量為,其中,則,解得:或(舍去)所以與向量方向相同的單位向量為故選A【題目點撥】本題主要考查了單位向量的概念及方程思想,還考查了平面向量共線定理的應用,考查計算能力,屬于較易題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由約束條件可得可行域,將問題轉化為在軸截距取值范圍的求解;通過直線平移可確定的最值點,代入點的坐標可求得最值,進而得到取值范圍.【題目詳解】由約束條件可得可行域如下圖陰影部分所示:將的取值范圍轉化為在軸截距的取值范圍問題由平移可知,當過圖中兩點時,在軸截距取得最大和最小值,,的取值范圍為故答案為:【題目點撥】本題考查線性規(guī)劃中的取值范圍問題的求解,關鍵是能夠?qū)栴}轉化成直線在軸截距的取值范圍的求解問題,通過數(shù)形結合的方式可求得結果.12、-2【解題分析】為方程兩根,因此13、【解題分析】試題分析:因為和關于軸對稱,所以,那么,(或),所以.【考點】同角三角函數(shù),誘導公式,兩角差的余弦公式【名師點睛】本題考查了角的對稱關系,以及誘導公式,常用的一些對稱關系包含:若與的終邊關于軸對稱,則,若與的終邊關于軸對稱,則,若與的終邊關于原點對稱,則.14、【解題分析】

由可知,算出用表示的極限,再利用性質(zhì)計算得出即可.【題目詳解】顯然公比不為1,所以公比為的等比數(shù)列求和公式,且,故.此時當時,求和極限為,所以,故,所以,故,又,故.故答案為:.【題目點撥】本題主要考查等比數(shù)列求和公式,當時.15、②③【解題分析】

利用等比數(shù)列的性質(zhì),可得,得出,進而判斷②③④,即可得到答案.【題目詳解】①中,由等比數(shù)列的公比為,且滿足,,,可得,所以,且所以是錯誤的;②中,由等比數(shù)列的性質(zhì),可得,所以是正確的;③中,由,且,,所以前項之積的最大值為,所以是正確的;④中,,所以正確.綜上可得,正確命題的序號為②③.故答案為:②③.【題目點撥】本題主要考查了等比數(shù)列的性質(zhì)的應用,其中解答中熟記等比數(shù)列的性質(zhì),合理推算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.16、【解題分析】

根據(jù)正弦定理將轉化為,即,由余弦定理得,再用基本不等式法求得,根據(jù)面積公式求解.【題目詳解】根據(jù)正弦定理可轉化為,化簡得由余弦定理得因為所以,當且僅當時取所以則面積的最大值為.故答案為:【題目點撥】本題主要考查正弦定理,余弦定理,基本不等式的綜合應用,還考查了運算求解的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)為非奇非偶函數(shù),證明見解析;(2).【解題分析】

(1)當時,,計算不相等,也不互為相反數(shù),可得出結論;(2)由奇函數(shù)的定義,求出的值,證明在上單調(diào)遞減,有解,化為有解,求出的值域,即可求解.【題目詳解】(1)為非奇非偶函數(shù).當時,,,,因為,所以不是偶函數(shù);又因為,所以不是奇函數(shù),即為非奇非偶函數(shù).(2)因為是奇函數(shù),所以恒成立,即對恒成立,化簡整理得,即.下用定義法研究的單調(diào)性;設任意,且,,所以函數(shù)在上單調(diào)遞減,因為有解,且函數(shù)為奇函數(shù),所以有解,又因為函數(shù)在上單調(diào)遞減,所以有解,,的值域為,所以,即.【題目點撥】本題考查函數(shù)性質(zhì)的綜合應用,涉及到函數(shù)的奇偶性求參數(shù),單調(diào)性證明及應用,以及求函數(shù)的值域,屬于較難題.18、(1);(2)【解題分析】

(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積,可用公式,因此把問題轉化為求bc的最大值.【題目詳解】(1)因為(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因為b2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,當且僅當b=c=1時,取等號.∴面積的最大值.【題目點撥】本題考查正弦定理解三角形及面積問題,解決三角形面積最值問題常常結合均值不等式求解,屬于中等題.19、(1),(2),,(3)【解題分析】

(1)由函數(shù)圖像過定點,代入運算即可得解;(2)由三角函數(shù)的單調(diào)增區(qū)間的求法求解即可;(3)由,求解不等式即可得解.【題目詳解】解:(1)因為函數(shù)圖象過點,所以,即.因為,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論