版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重慶市南開中學(xué)2023-2024學(xué)年數(shù)學(xué)九年級(jí)第一學(xué)期期末考試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.若關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則的值為()A. B. C. D.2.如果關(guān)于的方程是一元二次方程,那么的值為:()A. B. C. D.都不是3.如圖,AB∥EF,CD⊥EF,∠BAC=50°,則∠ACD=()A.120° B.130° C.140° D.150°4.如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個(gè)圓錐的側(cè)面和底面,則的長為()A. B. C. D.5.如圖,點(diǎn)是內(nèi)一點(diǎn),,,點(diǎn)、、、分別是、、、的中點(diǎn),則四邊形的周長是()A.24 B.21 C.18 D.146.已知圓錐的底面半徑為5,母線長為13,則這個(gè)圓錐的全面積是()A. B. C. D.7.下列事件是隨機(jī)事件的是()A.三角形內(nèi)角和為度 B.測量某天的最低氣溫,結(jié)果為C.買一張彩票,中獎(jiǎng) D.太陽從東方升起8.已知一組數(shù)據(jù)共有個(gè)數(shù),前面?zhèn)€數(shù)的平均數(shù)是,后面?zhèn)€數(shù)的平均數(shù)是,則這個(gè)數(shù)的平均數(shù)是()A. B. C. D.9.△ABC中,∠C=Rt∠,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)E、D,則AE的長為()A. B. C. D.10.設(shè),下列變形正確的是()A. B. C. D.11.如圖,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:①;②;③方程的兩個(gè)根是,;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)時(shí),隨增大而增大其中結(jié)論正確的個(gè)數(shù)是A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)12.如圖,一次函數(shù)和反比例函數(shù)的圖象相交于,兩點(diǎn),則使成立的取值范圍是()A.或 B.或C.或 D.或二、填空題(每題4分,共24分)13.正五邊形的每個(gè)內(nèi)角為______度.14.如圖,AB是⊙O的直徑,BC與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,若∠ACB=50°,則∠BOD=______度.15.如圖,個(gè)全等的等腰三角形的底邊在同一條直線上,底角頂點(diǎn)依次重合.連接第一個(gè)三角形的底角頂點(diǎn)和第個(gè)三角形的頂角頂點(diǎn)交于點(diǎn),則_________.16.一張直角三角形紙片,,,,點(diǎn)為邊上的任一點(diǎn),沿過點(diǎn)的直線折疊,使直角頂點(diǎn)落在斜邊上的點(diǎn)處,當(dāng)是直角三角形時(shí),則的長為_____.17.如圖,中,A,B兩個(gè)頂點(diǎn)在軸的上方,點(diǎn)C的坐標(biāo)是(?1,0).以點(diǎn)C為位似中心,在軸的下方作的位似圖形,并把的邊長放大到原來的2倍,記所得的像是.設(shè)點(diǎn)A的橫坐標(biāo)是,則點(diǎn)A對(duì)應(yīng)的點(diǎn)的橫坐標(biāo)是_________.18.在中,,為的中點(diǎn),則的長為__________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標(biāo)系中,⊙C與y軸相切,且C點(diǎn)坐標(biāo)為(1,0),直線過點(diǎn)A(—1,0),與⊙C相切于點(diǎn)D,求直線的解析式.20.(8分)已知,如圖,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩線交于點(diǎn)P.①求證:四邊形CODP是菱形.②若AD=6,AC=10,求四邊形CODP的面積.21.(8分)小彬做了探究物體投影規(guī)律的實(shí)驗(yàn),并提出了一些數(shù)學(xué)問題請(qǐng)你解答:(1)如圖1,白天在陽光下,小彬?qū)⒛緱U水平放置,此時(shí)木桿在水平地面上的影子為線段.①若木桿的長為,則其影子的長為;②在同一時(shí)刻同一地點(diǎn),將另一根木桿直立于地面,請(qǐng)畫出表示此時(shí)木桿在地面上影子的線段;(2)如圖2,夜晚在路燈下,小彬?qū)⒛緱U水平放置,此時(shí)木桿在水平地面上的影子為線段.①請(qǐng)?jiān)趫D中畫出表示路燈燈泡位置的點(diǎn);②若木桿的長為,經(jīng)測量木桿距離地面,其影子的長為,則路燈距離地面的高度為.22.(10分)(1)某學(xué)?!皩W(xué)習(xí)落實(shí)”數(shù)學(xué)興趣小組遇到這樣一個(gè)題目:如圖1,在中,點(diǎn)在線段上,,,,,求的長.經(jīng)過數(shù)學(xué)小組成員討論發(fā)現(xiàn),過點(diǎn)作,交的延長線于點(diǎn),通過構(gòu)造就可以解決問題(如圖2)請(qǐng)回答:,.(2)請(qǐng)參考以上解決思路,解決問題:如圖在四邊形中對(duì)角線與相交于點(diǎn),,,,.求的長.23.(10分)如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,∠AOD=60°,AB=,AE⊥BD于點(diǎn)E,求OE的長.24.(10分)如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和B(3,0),與y軸交于點(diǎn)C(0,3).(1)求拋物線的解析式;(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;(3)E是拋物線對(duì)稱軸上一點(diǎn),F(xiàn)是拋物線上一點(diǎn),是否存在以A,B,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.25.(12分)如圖,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如圖1,當(dāng)α=90°時(shí),∠AMD的度數(shù)為°(2)如圖2,當(dāng)α=60°時(shí),∠AMD的度數(shù)為°(3)如圖3,當(dāng)△OCD繞O點(diǎn)任意旋轉(zhuǎn)時(shí),∠AMD與α是否存在著確定的數(shù)量關(guān)系?如果存在,請(qǐng)你用表示∠AMD,并圖3進(jìn)行證明;若不確定,說明理由.26.定義:若一個(gè)四邊形能被其中一條對(duì)角線分割成兩個(gè)相似三角形,則稱這個(gè)四邊形為“友好四邊形”.(1)如圖1,在的正方形網(wǎng)格中,有一個(gè)網(wǎng)格和兩個(gè)網(wǎng)格四邊形與,其中是被分割成的“友好四邊形”的是;(2)如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,點(diǎn)落在邊,過點(diǎn)作交的延長線于點(diǎn),求證:四邊形是“友好四邊形”;(3)如圖3,在中,,,的面積為,點(diǎn)是的平分線上一點(diǎn),連接,.若四邊形是被分割成的“友好四邊形”,求的長.
參考答案一、選擇題(每題4分,共48分)1、B【分析】若一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則根的判別式△=b2?4ac=0,建立關(guān)于k的等式,求出k.【詳解】解:∵方程有兩個(gè)相等的實(shí)數(shù)根,∴△=b2?4ac=62?4×1×k=36?4k=0,解得:k=1.故選:B.【點(diǎn)睛】本題考查一元二次方程根的情況與判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0時(shí),方程沒有實(shí)數(shù)根.2、C【分析】據(jù)一元二次方程的定義得到m-1≠0且m2-7=2,然后解不等式和方程即可得到滿足條件的m的值.【詳解】解:根據(jù)題意得m-1≠0且m2-7=2,
解得m=-1.
故選:C.【點(diǎn)睛】本題考查了一元二次方程的定義:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.3、C【解析】試題分析:如圖,延長AC交EF于點(diǎn)G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故選C.考點(diǎn):垂線的定義;平行線的性質(zhì);三角形的外角性質(zhì)4、B【分析】設(shè)AB=xcm,則DE=(6-x)cm,根據(jù)扇形的弧長等于圓錐底面圓的周長列出方程,求解即可.【詳解】設(shè),則DE=(6-x)cm,由題意,得,解得.故選B.【點(diǎn)睛】本題考查了圓錐的計(jì)算,矩形的性質(zhì),正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.5、B【分析】根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半,求出,然后代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.【詳解】∵E、F、G、H分別是AB、AC、CD、BD的中點(diǎn),
∴,∴四邊形EFGH的周長,
又∵AD=11,BC=10,
∴四邊形EFGH的周長=11+10=1.
故選:B.【點(diǎn)睛】本題考查了三角形的中位線定理,熟記三角形的中位線平行于第三邊并且等于第三邊的一半是解題的關(guān)鍵.6、B【分析】先根據(jù)圓錐側(cè)面積公式:求出圓錐的側(cè)面積,再加上底面積即得答案.【詳解】解:圓錐的側(cè)面積=,所以這個(gè)圓錐的全面積=.故選:B.【點(diǎn)睛】本題考查了圓錐的有關(guān)計(jì)算,屬于基礎(chǔ)題型,熟練掌握?qǐng)A錐側(cè)面積的計(jì)算公式是解答的關(guān)鍵.7、C【分析】一定發(fā)生或是不發(fā)生的事件是確定事件,可能發(fā)生也可能不發(fā)生的事件是隨機(jī)事件,根據(jù)定義判斷即可.【詳解】A.該事件不可能發(fā)生,是確定事件;B.該事件不可能發(fā)生,是確定事件;C.該事件可能發(fā)生,是隨機(jī)事件;D.該事件一定發(fā)生,是確定事件.故選:C.【點(diǎn)睛】此題考查事件的分類,正確理解確定事件和隨機(jī)事件的區(qū)別并熟練解題是關(guān)鍵.8、C【分析】由題意可以求出前14個(gè)數(shù)的和,后6個(gè)數(shù)的和,進(jìn)而得到20個(gè)數(shù)的總和,從而求出20個(gè)數(shù)的平均數(shù).【詳解】解:由題意得:(10×14+15×6)÷20=11.5,故選:C.【點(diǎn)睛】此題考查平均數(shù)的意義和求法,求出這些數(shù)的總和,再除以總個(gè)數(shù)即可..9、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的長;過C作CM⊥AB,交AB于點(diǎn)M,由垂徑定理可得M為AE的中點(diǎn),在Rt△ACM中,根據(jù)勾股定理得AM的長,從而得到AE的長.【詳解】解:在Rt△ABC中,
∵AC=3,BC=4,
∴AB==1.
過C作CM⊥AB,交AB于點(diǎn)M,如圖所示,
由垂徑定理可得M為AE的中點(diǎn),
∵S△ABC=AC?BC=AB?CM,且AC=3,BC=4,AB=1,
∴CM=,
在Rt△ACM中,根據(jù)勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AE=2AM=.
故選:C.【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.10、D【分析】根據(jù)比例的性質(zhì)逐個(gè)判斷即可.【詳解】解:由得,2a=3b,A、∵,∴2b=3a,故本選項(xiàng)不符合題意;
B、∵,∴3a=2b,故本選項(xiàng)不符合題意;
C、,故本選項(xiàng)不符合題意;
D、,故本選項(xiàng)符合題意;
故選:D.【點(diǎn)睛】本題考查了比例的性質(zhì),能熟記比例的性質(zhì)是解此題的關(guān)鍵,如果,那么ad=bc.11、C【分析】利用拋物線與軸的交點(diǎn)個(gè)數(shù)可對(duì)①進(jìn)行判斷;由對(duì)稱軸方程得到,然后根據(jù)時(shí)函數(shù)值為0可得到,則可對(duì)②進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與軸的一個(gè)交點(diǎn)坐標(biāo)為,則可對(duì)③進(jìn)行判斷;根據(jù)拋物線在軸上方所對(duì)應(yīng)的自變量的范圍可對(duì)④進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對(duì)⑤進(jìn)行判斷.【詳解】解:拋物線與軸有2個(gè)交點(diǎn),,所以①正確;,即,而時(shí),,即,,所以②錯(cuò)誤;拋物線的對(duì)稱軸為直線,而點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,方程的兩個(gè)根是,,所以③正確;根據(jù)對(duì)稱性,由圖象知,當(dāng)時(shí),,所以④錯(cuò)誤;拋物線的對(duì)稱軸為直線,當(dāng)時(shí),隨增大而增大,所以⑤正確.故選:.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對(duì)于二次函數(shù),二次項(xiàng)系數(shù)決定拋物線的開口方向和大?。寒?dāng)時(shí),拋物線向上開口;當(dāng)時(shí),拋物線向下開口;一次項(xiàng)系數(shù)和二次項(xiàng)系數(shù)共同決定對(duì)稱軸的位置:當(dāng)與同號(hào)時(shí)(即,對(duì)稱軸在軸左;當(dāng)與異號(hào)時(shí)(即,對(duì)稱軸在軸右;常數(shù)項(xiàng)決定拋物線與軸交點(diǎn)位置:拋物線與軸交于;拋物線與軸交點(diǎn)個(gè)數(shù)由△決定:△時(shí),拋物線與軸有2個(gè)交點(diǎn);△時(shí),拋物線與軸有1個(gè)交點(diǎn);△時(shí),拋物線與軸沒有交點(diǎn).12、B【分析】根據(jù)圖象找出一次函數(shù)圖象在反比例函數(shù)圖象上方時(shí)對(duì)應(yīng)的自變量的取值范圍即可.【詳解】觀察函數(shù)圖象可發(fā)現(xiàn):或時(shí),一次函數(shù)圖象在反比例函數(shù)圖象上方,∴使成立的取值范圍是或,故選B.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)綜合,函數(shù)與不等式,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、1【分析】先求出正五邊形的內(nèi)角和,再根據(jù)正五邊形的每個(gè)內(nèi)角都相等,進(jìn)而求出其中一個(gè)內(nèi)角的度數(shù).【詳解】解:正五邊形的內(nèi)角和是:(5﹣2)×180°=540°,則每個(gè)內(nèi)角是:540÷5=1°.故答案為:1.【點(diǎn)睛】本題主要考查多邊形的內(nèi)角和計(jì)算公式,以及正多邊形的每個(gè)內(nèi)角都相等等知識(shí)點(diǎn).14、80【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】解:∵BC是⊙O的切線,
∴∠ABC=90°,
∴∠A=90°-∠ACB=40°,
由圓周角定理得,∠BOD=2∠A=80°.【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.15、n【分析】連接A1An,根據(jù)全等三角形的性質(zhì)得到∠AB1B2=∠A2B2B3,根據(jù)平行線的判定得到A1B1∥A2B2,又根據(jù)A1B1=A2B2,得到四邊形A1B1B2A2是平行四邊形,從而得到A1A2∥B1B2,從而得出A1An∥B1B2,然后根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接A1An,根據(jù)全等三角形的性質(zhì)得到∠AB1B2=∠A2B2B3,∴A1B1∥A2B2,又A1B1=A2B2,∴四邊形A1B1B2A2是平行四邊形.∴A1A2∥B1B2,A1A2=B1B2=A2A3,同理可得,A2A3=A3A4=A4A5=…=An-1An.根據(jù)全等易知A1,A2,A3,…,An共線,∴A1An∥B1B2,∴PnB1B2∽△PnAnA1,,又A1Pn+PnB2=A1B2,∴.故答案為:n.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),全等三角形的性質(zhì),等腰三角形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.16、或【分析】依據(jù)沿過點(diǎn)D的直線折疊,使直角頂點(diǎn)C落在斜邊AB上的點(diǎn)E處,當(dāng)△BDE是直角三角形時(shí),分兩種情況討論:∠DEB=90°或∠BDE=90°,分別依據(jù)勾股定理或者相似三角形的性質(zhì),即可得到CD的長【詳解】分兩種情況:①若,則,,連接,則,,,設(shè),則,中,,解得,;②若,則,,四邊形是正方形,,,,,設(shè),則,,,,解得,,綜上所述,的長為或,故答案為或.【點(diǎn)睛】此題考查折疊的性質(zhì),勾股定理,全等三角形的判定與性質(zhì),解題關(guān)鍵在于畫出圖形17、【分析】△A′B′C的邊長是△ABC的邊長的2倍,過A點(diǎn)和A′點(diǎn)作x軸的垂線,垂足分別是D和E,因?yàn)辄c(diǎn)A的橫坐標(biāo)是a,則DC=-1-a.可求EC=-2-2a,則OE=CE-CO=-2-2a-1=-3-2a【詳解】解:如圖,過A點(diǎn)和A′點(diǎn)作x軸的垂線,垂足分別是D和E,∵點(diǎn)A的橫坐標(biāo)是a,點(diǎn)C的坐標(biāo)是(-1,0).
∴DC=-1-a,OC=1
又∵△A′B′C的邊長是△ABC的邊長的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案為:-3-2a【點(diǎn)睛】本題主要考查了相似的性質(zhì),相似于點(diǎn)的坐標(biāo)相聯(lián)系,把點(diǎn)的坐標(biāo)的問題轉(zhuǎn)化為線段的長的問題.18、5【分析】先根據(jù)勾股定理的逆定理判定△ABC是直角三角形,再根據(jù)斜中定理計(jì)算即可得出答案.【詳解】∵∴∴△ABC為直角三角形,AB為斜邊又為的中點(diǎn)∴故答案為5.【點(diǎn)睛】本題考查的是勾股定理的逆定理以及直角三角形的斜中定理,解題關(guān)鍵是根據(jù)已知條件判斷出三角形是直角三角形.三、解答題(共78分)19、或.【詳解】解:如圖所示,連接CD,∵直線為⊙C的切線,∴CD⊥AD.∵C點(diǎn)坐標(biāo)為(1,0),∴OC=1,即⊙C的半徑為1,∴CD=OC=1.又∵點(diǎn)A的坐標(biāo)為(—1,0),∴AC=2,∴∠CAD=30°,在Rt△AOB中,,即,設(shè)直線l解析式為:y=kx+b(k≠0),則解得∴直線l的函數(shù)解析式為,同理可得,當(dāng)直線l在x軸的下方時(shí),直線l的函數(shù)解析式為.故直線l的函數(shù)解析式為或.【點(diǎn)睛】這是一道圓與直角坐標(biāo)系的綜合題,求直線的解析式,通常用待定系數(shù)法(知道圖象上兩個(gè)點(diǎn)的坐標(biāo)即可),題目已給出點(diǎn)A的坐標(biāo),再求出一個(gè)點(diǎn)即可,抓住點(diǎn)D是直線與⊙C的切點(diǎn),由C點(diǎn)坐標(biāo)為(1,0)及圓的性質(zhì)易求點(diǎn)B的坐標(biāo)為(0,),由點(diǎn)A和點(diǎn)B的坐標(biāo)易求直線的解析式20、①證明見解析;(2)S菱形CODP=24.【解析】①根據(jù)DP∥AC,CP∥BD,即可證出四邊形CODP是平行四邊形,由矩形的性質(zhì)得出OC=OD,即可得出結(jié)論;②利用S△COD=12S菱形CODP,先求出S△COD,即可得【詳解】證明:①∵DP∥AC,CP∥BD∴四邊形CODP是平行四邊形,∵四邊形ABCD是矩形,∴BD=AC,OD=12BD,OC=12∴OD=OC,∴四邊形CODP是菱形.②∵AD=6,AC=10∴DC=AC2∵AO=CO,∴S△COD=12S△ADC=12×12∵四邊形CODP是菱形,∴S△COD=12S菱形CODP=12∴S菱形CODP=24【點(diǎn)睛】本題考查了矩形性質(zhì)和菱形的判定,解題關(guān)鍵是熟練掌握菱形的判定方法,由矩形的性質(zhì)得出OC=OD.21、(1)①;②見解析;(2)①見解析;②【分析】(1)①根據(jù)題意證得四邊形為平行四邊形,從而求得結(jié)論;②根據(jù)平行投影的特點(diǎn)作圖:過木桿的頂點(diǎn)作太陽光線的平行線;(2)①分別過影子的端點(diǎn)及其線段的相應(yīng)的端點(diǎn)作射線,兩條射線的交點(diǎn)即為光源的位置;②根據(jù)∥,可證得,利用相似三角形對(duì)應(yīng)高的比等于相似比即可求得結(jié)論.【詳解】(1)①根據(jù)題意:∥,∥,∴四邊形為平行四邊形,∴;②如圖所示,線段即為所求;(2)①如圖所示,點(diǎn)即為所求;②過點(diǎn)作分別交、于點(diǎn)、∵∥∴,,解得:,路燈距離地面的高度為米.【點(diǎn)睛】本題考查平行投影問題以及相似三角形的判定和性質(zhì),平行光線得到的影子是平行光線經(jīng)過物體的頂端得到的影子,利用相似三角形對(duì)應(yīng)高的比等于相似比是解決本題的關(guān)鍵.22、(1),;(2)【分析】(1)
根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進(jìn)而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠
ADB,由等角對(duì)等邊可得出;
(2)
過點(diǎn)B作BE∥
AD交AC于點(diǎn)E,同(1)
可得出AE,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1),.又,.,故答案為:;.(2)過點(diǎn)作交于點(diǎn),如圖所示.,.,在中,,即,解得:在中,.【點(diǎn)睛】本題考查了平行線的性質(zhì)、相似三角形性質(zhì)及勾股定理,構(gòu)造相似三角形是解題的關(guān)鍵,利用勾股定理進(jìn)行計(jì)算是解決本題的難點(diǎn).23、1【分析】矩形對(duì)角線相等且互相平分,即OA=OD,根據(jù)∠AOD=60°可得△AOD為等邊三角形,即OA=AD,∵AE⊥BD,∴E為OD的中點(diǎn),即可求OE的值.【詳解】解:∵對(duì)角線相等且互相平分,∴OA=OD∵∠AOD=60°∴△AOD為等邊三角形,則OA=AD,BD=2DO,AB=AD,∴AD=2,∵AE⊥BD,∴E為OD的中點(diǎn)∴OE=OD=AD=1,答:OE的長度為1.【點(diǎn)睛】本題考查了矩形對(duì)角線的性質(zhì),利用矩形對(duì)角線相等是解題關(guān)鍵.24、(1)y=x2﹣4x+1;(2);(1)見解析.【分析】(1)利用待定系數(shù)法進(jìn)行求解即可;(2)設(shè)點(diǎn)M的坐標(biāo)為(m,m2﹣4m+1),求出直線BC的解析,根據(jù)MN∥y軸,得到點(diǎn)N的坐標(biāo)為(m,﹣m+1),由拋物線的解析式求出對(duì)稱軸,繼而確定出1<m<1,用含m的式子表示出MN,繼而利用二次函數(shù)的性質(zhì)進(jìn)行求解即可;(1)分AB為邊或?yàn)閷?duì)角線進(jìn)行討論即可求得.【詳解】(1)將點(diǎn)B(1,0)、C(0,1)代入拋物線y=x2+bx+c中,得:,解得:,故拋物線的解析式為y=x2﹣4x+1;(2)設(shè)點(diǎn)M的坐標(biāo)為(m,m2﹣4m+1),設(shè)直線BC的解析式為y=kx+1,把點(diǎn)B(1,0)代入y=kx+1中,得:0=1k+1,解得:k=﹣1,∴直線BC的解析式為y=﹣x+1,∵M(jìn)N∥y軸,∴點(diǎn)N的坐標(biāo)為(m,﹣m+1),∵拋物線的解析式為y=x2﹣4x+1=(x﹣2)2﹣1,∴拋物線的對(duì)稱軸為x=2,∴點(diǎn)(1,0)在拋物線的圖象上,∴1<m<1.∵線段MN=﹣m+1﹣(m2﹣4m+1)=﹣m2+1m=﹣(m﹣)2+,∴當(dāng)m=時(shí),線段MN取最大值,最大值為;(1)存在.點(diǎn)F的坐標(biāo)為(2,﹣1)或(0,1)或(4,1).當(dāng)以AB為對(duì)角線,如圖1,∵四邊形AFBE為平行四邊形,EA=EB,∴四邊形AFBE為菱形,∴點(diǎn)F也在對(duì)稱軸上,即F點(diǎn)為拋物線的頂點(diǎn),∴F點(diǎn)坐標(biāo)為(2,﹣1);當(dāng)以AB為邊時(shí),如圖2,∵四邊形AFBE為平行四邊形,∴EF=AB=2,即F2E=2,F(xiàn)1E=2,∴F1的橫坐標(biāo)為0,F(xiàn)2的橫坐標(biāo)為4,對(duì)于y=x2﹣4x+1,當(dāng)x=0時(shí),y=1;當(dāng)x=4時(shí),y=16﹣16+1=1,∴F點(diǎn)坐標(biāo)為(0,1)或(4,1),綜上所述,F(xiàn)點(diǎn)坐標(biāo)為(2,﹣1)或(0,1)或(4,1).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題,涉及了待定系數(shù)法,二次函數(shù)的性質(zhì),平行四邊形的性質(zhì),菱形的判定等,綜合性較強(qiáng),有一定的難度,熟練掌握相關(guān)知識(shí),正確進(jìn)行分類討論是解題的關(guān)鍵.25、(1)1;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小馬過河 課件
- 代理竹筍銷售合同模板
- 塑料罐車出售合同范例
- 減重儀器采購合同范例
- 工作襯衫合同范例
- 大齡勞務(wù)合同范例
- 廣告制作框架合同范例
- 廠房融資租賃合同模板
- 制作窗戶合同范例
- 商購銷合同模板
- 青驕第二課堂2021年禁毒知識(shí)答題期末考試答案(初中組)
- 專題10 議論文閱讀(含答案) 2024年中考語文【熱點(diǎn)-重點(diǎn)-難點(diǎn)】專練(上海專用)
- DL∕T 2447-2021 水電站防水淹廠房安全檢查技術(shù)規(guī)程
- 以新質(zhì)生產(chǎn)力促進(jìn)煤炭工業(yè)高質(zhì)量發(fā)展
- 《浙江省建設(shè)工程專業(yè)工程師和高級(jí)工程師職務(wù)任職資格評(píng)價(jià)條件》
- 《中華人民共和國監(jiān)察法》知識(shí)測試題庫
- 《城市軌道交通橋梁養(yǎng)護(hù)技術(shù)規(guī)范》
- 辦理電信業(yè)務(wù)的委托書
- 2024年網(wǎng)上大學(xué)智能云服務(wù)交付工程師認(rèn)證考試題庫800題(含答案)
- 知道網(wǎng)課智慧樹《盆景學(xué)(西南大學(xué))》章節(jié)測試答案
- 《水土保持技術(shù)》課件-項(xiàng)目八 攔渣措施
評(píng)論
0/150
提交評(píng)論