版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
新疆烏魯木齊水磨溝區(qū)四校聯(lián)考2023-2024學年數(shù)學九上期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關(guān)系是()A.點P在⊙O內(nèi) B.點P在⊙O外 C.點P在⊙O上 D.無法判斷2.下列事件中,是隨機事件的是()A.兩條直線被第三條直線所截,同位角相等B.任意一個四邊形的外角和等于360°C.早上太陽從西方升起D.平行四邊形是中心對稱圖形3.如圖,兩條直線被三條平行線所截,若,則()A. B. C. D.4.若關(guān)于x的一元二次方程kx2﹣2x﹣1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠05.已知點關(guān)于軸的對稱點在反比例函數(shù)的圖像上,則實數(shù)的值為()A.-3 B. C. D.36.如圖,在平面直角坐標系中,若干個半徑為2個單位長度,圓心角為的扇形組成一條連續(xù)的曲線,點從原點出發(fā),沿這條曲線向右上下起伏運動,點在直線上的速度為每秒2個單位長度,點在弧線上的速度為每秒個單位長度,則2019秒時,點的坐標是()A. B. C. D.7.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則一次函數(shù)y=ax﹣2b(a≠0)與反比例函數(shù)y=(c≠0)在同一平面直角坐標系中的圖象大致是()A. B.C. D.8.圓心角為140°的扇形的半徑為3cm,則這個扇形的面積是()cm1.A.π B.3π C.9π D.6π9.如圖,菱形在第一象限內(nèi),,反比例函數(shù)的圖象經(jīng)過點,交邊于點,若的面積為,則的值為()A. B. C. D.410.由若干個相同的小正方體搭成的一個幾何體的俯視圖和左視圖如圖所示,則搭成這個幾何體的小正方體的個數(shù)最多有()A.5個 B.6個 C.7個 D.8個二、填空題(每小題3分,共24分)11.如圖,已知二次函數(shù)頂點的縱坐標為,平行于軸的直線交此拋物線,兩點,且,則點到直線的距離為__________12.方程的解為________.13.如圖,平面直角坐標系中,等腰的頂點分別在軸、軸的正半軸,軸,點在函數(shù)的圖象上.若則的值為_____.14.如圖,正△ABO的邊長為2,O為坐標原點,A在軸上,B在第二象限.△ABO沿軸正方向作無滑動的翻滾,經(jīng)第一次翻滾后得△A1B1O,則翻滾10次后AB中點M經(jīng)過的路徑長為________15.如圖,在矩形中,在上,在矩形的內(nèi)部作正方形.當,時,若直線將矩形的面積分成兩部分,則的長為________.16.如圖,直線與軸交于點,與軸交于點,點在軸的正半軸上,,過點作軸交直線于點,若反比例函數(shù)的圖象經(jīng)過點,則的值為_________________.17.一圓錐的側(cè)面積為,底面半徑為3,則該圓錐的母線長為________.18.關(guān)于x的方程x2﹣x﹣m=0有兩個不相等實根,則m的取值范圍是__________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,為坐標原點,的邊垂直于軸,垂足為點,反比例函數(shù)的圖象經(jīng)過的中點,且與相交于點.(1)求反比例函數(shù)的解析式;(2)求的值.20.(6分)如圖,四邊形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋轉(zhuǎn)一定角度后能與△DFA重合.(1)旋轉(zhuǎn)中心是哪一點?(2)旋轉(zhuǎn)了多少度?(3)若AE=5cm,求四邊形ABCD的面積.21.(6分)2019年5月,以“尋根國學,傳承文明”為主題的蘭州市第三屆“國學少年強一國學知識挑戰(zhàn)賽”總決賽拉開帷幕,小明晉級了總決賽.比賽過程分兩個環(huán)節(jié),參賽選手須在每個環(huán)節(jié)中各選擇一道題目.第一環(huán)節(jié):寫字注音、成語故事、國學常識、成語接龍(分別用表示);第二環(huán)節(jié):成語聽寫、詩詞對句、經(jīng)典通讀(分別用表示)(1)請用樹狀圖或列表的方法表示小明參加總決賽抽取題目的所有可能結(jié)果(2)求小明參加總決賽抽取題目都是成語題目(成語故事、成語接龍、成語聽寫)的概率.22.(8分)在如圖所示的方格紙中,每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點及點O都在格點上(每個小方格的頂點叫做格點).(1)以點O為位似中心,在網(wǎng)格區(qū)域內(nèi)畫出△A′B′C′,使△A′B′C′與△ABC位似(A′、B′、C′分別為A、B、C的對應(yīng)點),且位似比為2:1;(2)△A′B′C′的面積為個平方單位;(3)若網(wǎng)格中有一格點D′(異于點C′),且△A′B′D′的面積等于△A′B′C′的面積,請在圖中標出所有符合條件的點D′.(如果這樣的點D′不止一個,請用D1′、D2′、…、Dn′標出)23.(8分)如圖1,分別是的內(nèi)角的平分線,過點作,交的延長線于點.(1)求證:;(2)如圖2,如果,且,求;(3)如果是銳角,且與相似,求的度數(shù),并直接寫出的值.24.(8分)如圖,在四邊形ABCD中,AD∥BC,AD=2BC,E為AD的中點,連接BD,BE,∠ABD=90°(1)求證:四邊形BCDE為菱形.(2)連接AC,若AC⊥BE,BC=2,求BD的長.25.(10分)已知拋物線y=﹣x2+mx+m﹣2的頂點為A,且經(jīng)過點(3,﹣3).(1)求拋物線的解析式及頂點A的坐標;(2)將原拋物線沿射線OA方向進行平移得到新的拋物線,新拋物線與射線OA交于C,D兩點,如圖,請問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請求出這個定值;若不是,請說明理由.26.(10分)如圖,分別以△ABC的邊AC和BC為腰向外作等腰直角△DAC和等腰直角△EBC,連接DE.(1)求證:△DAC∽△EBC;(2)求△ABC與△DEC的面積比.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.【點睛】本題考查點與圓的位置關(guān)系,記?。狐c與圓的位置關(guān)系有3種設(shè)的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內(nèi).2、A【分析】根據(jù)隨機事件的概念對每一事件進行分析.【詳解】選項A,只有當兩條直線為平行線時,同位角才相等,故不確定為隨機事件.選項B,不可能事件.選項C,不可能事件選項D,必然事件.故選A【點睛】本題考查了隨機事件的概念.3、D【解析】先根據(jù)平行線分線段成比例定理求出DF的長,然后可求出BF的長.【詳解】,,即,解得,,,故選:.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應(yīng)線段的長度成比例.4、D【解析】∵一元二次方程kx2﹣2x﹣1=1有兩個不相等的實數(shù)根,∴△=b2﹣4ac=4+4k>1,且k≠1.解得:k>﹣1且k≠1.故選D.考點:一元二次方程的定義,一元二次方程根的判別式,分類思想的應(yīng)用.5、A【分析】先根據(jù)關(guān)于x軸對稱的點的坐標特征確定A'的坐標為,然后把A′的坐標代入中即可得到k的值.【詳解】解:點關(guān)于x軸的對稱點A'的坐標為,
把A′代入,得k=-1×1=-1.
故選:A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.6、B【分析】設(shè)第n秒運動到Pn(n為自然數(shù))點,根據(jù)點P的運動規(guī)律找出部分Pn點的坐標,根據(jù)坐標的變化找出變化規(guī)律依此規(guī)律即可得出結(jié)論.【詳解】解:作于點A.秒∴1秒時到達點,2秒時到達點,3秒時到達點,……,.,.∴,,,,設(shè)第n秒運動到為自然數(shù)點,觀察,發(fā)現(xiàn)規(guī)律:,,,,,,,,,,,,故選:B.【點睛】本題考查了解直角三角形,弧長的計算及列代數(shù)式表示規(guī)律,先通過弧長的計算,算出每秒點P達到的位置,再表示出開始幾個點的坐標,從而找出其中的規(guī)律.7、D【分析】先根據(jù)二次函數(shù)的圖象開口向上可知a>0,對稱軸在y軸的左側(cè)可知b>0,再由函數(shù)圖象交y軸的負半軸可知c<0,然后根據(jù)一次函數(shù)的性質(zhì)和反比例函數(shù)的性質(zhì)即可得出正確答案.【詳解】∵二次函數(shù)的圖象開口向上,對稱軸在y軸的左側(cè),函數(shù)圖象交于y軸的負半軸∴a>0,b>0,c<0,∴反比例函數(shù)y=的圖象必在二、四象限;一次函數(shù)y=ax﹣2b一定經(jīng)過一三四象限,故選:D.【點睛】此題主要考查二次函數(shù)與反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知二次函數(shù)各系數(shù)與圖像的關(guān)系.8、D【解析】試題分析:扇形面積的計算公式為:,故選擇D.9、C【分析】過A作AE⊥x軸于E,設(shè)OE=,則AE=,OA=,即菱形邊長為,再根據(jù)△AOD的面積等于菱形面積的一半建立方程可求出,利用點A的橫縱坐標之積等于k即可求解.【詳解】如圖,過A作AE⊥x軸于E,設(shè)OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形邊長為由圖可知S菱形AOCB=2S△AOD∴,即∴∴故選C.【點睛】本題考查了反比例函數(shù)與幾何綜合問題,利用特殊角度的三角函數(shù)值表示出菱形邊長及A點坐標是解決本題的關(guān)鍵.10、D【分析】根據(jù)所給出的圖形可知這個幾何體共有3層,3列,先看第一層正方體可能的最多個數(shù),再看第二、三層正方體的可能的最多個數(shù),相加即可.【詳解】根據(jù)主視圖和左視圖可得:這個幾何體有3層,3列,最底層最多有2×2=4個正方體,第二層有2個正方體,第三層有2個正方體則搭成這個幾何體的小正方體的個數(shù)最多是4+2+2=8個;故選:D.【點睛】此題考查了有三視圖判斷幾何體,關(guān)鍵是根據(jù)主視圖和左視圖確定組合幾何體的層數(shù)及列數(shù).二、填空題(每小題3分,共24分)11、1【分析】設(shè)出頂點式,根據(jù),設(shè)出B(h+3,a),將B點坐標代入,即可求出a值,即可求出直線l與x軸之間的距離,進一步求出答案.【詳解】由題意知函數(shù)的頂點縱坐標為-3,可設(shè)函數(shù)頂點式為,因為平行于軸的直線交此拋物線,兩點,且,所以可設(shè)B(h+3,a).將B(h+3,a)代入,得所以點B到x軸的距離是6,即直線l與x軸的距離是6,又因為D到x軸的距離是3所以點到直線的距離:3+6=1故答案為1.【點睛】本題考查了頂點式的應(yīng)用,能根據(jù)題意設(shè)出頂點式是解答此題的關(guān)鍵.12、【解析】這個式子先移項,變成x2=9,從而把問題轉(zhuǎn)化為求9的平方根.【詳解】解:移項得x2=9,
解得x=±1.
故答案為.【點睛】本題考查了解一元二次方程-直接開平方法,解這類問題要移項,把所含未知數(shù)的項移到等號的左邊,把常數(shù)項移項等號的右邊,化成x2=a(a≥0)的形式,利用數(shù)的開方直接求解.注意:
(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負,分開求得方程解”.
(2)用直接開方法求一元二次方程的解,要仔細觀察方程的特點.13、4【分析】根據(jù)等腰三角形的性質(zhì)和勾股定理求出AC的值,根據(jù)等面積法求出OA的值,OA和AC分別是點C的橫縱坐標,又點C在反比例函數(shù)圖像上,即可得出答案.【詳解】∵△ABC為等腰直角三角形,AB=2∴BC=2,解得:OA=∴點C的坐標為又點C在反比例函數(shù)圖像上∴故答案為4.【點睛】本題考查的是反比例函數(shù),解題關(guān)鍵是根據(jù)等面積法求出點C的橫坐標.14、(4+)【分析】根據(jù)題意先作B3E⊥x軸于E,觀察圖象可知為三次一個循環(huán),求點M的運動路徑,進而分析求得翻滾10次后AB中點M經(jīng)過的路徑長.【詳解】解:如圖作B3E⊥x軸于E,可知OE=5,B3E=,觀察圖象可知為三次一個循環(huán),一個循環(huán)點M的運動路徑為:,則翻滾10次后AB中點M經(jīng)過的路徑長為:.故答案為:(4+).【點睛】本題考查規(guī)律題,解題的關(guān)鍵是靈活運用弧長公式、等邊三角形的性質(zhì)等知識解決問題.15、或【分析】分二種情形分別求解:①如圖1中,延長交于,當時,直線將矩形的面積分成兩部分.②如圖2中,延長交于交的延長線于,當時,直線將矩形的面積分成兩部分.【詳解】解:如圖1中,設(shè)直線交于,當時,直線將矩形的面積分成兩部分.,,,.如圖2中,設(shè)直線長交于交的延長線于,當時,直線將矩形的面積分成兩部分,易證∴,,,,.綜上所述,滿足條件的的值為或.故答案為:或.【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.16、1【解析】先求出直線y=x+2與坐標軸的交點坐標,再由三角形的中位線定理求出CD,得到C點坐標.【詳解】解:令x=0,得y=x+2=0+2=2,
∴B(0,2),
∴OB=2,
令y=0,得0=x+2,解得,x=-6,
∴A(-6,0),
∴OA=OD=6,
∵OB∥CD,
∴CD=2OB=4,
∴C(6,4),
把c(6,4)代入y=(k≠0)中,得k=1,
故答案為:1.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合,需要掌握求函數(shù)圖象與坐標軸的交點坐標方法,三角形的中位線定理,待定系數(shù)法.本題的關(guān)鍵是求出C點坐標.17、2【分析】圓錐的側(cè)面積=底面周長×母線長÷1.【詳解】解:底面半徑為3,則底面周長=6π,設(shè)圓錐的母線長為x,圓錐的側(cè)面積=×6πx=12π.解得:x=2,故答案為2.18、m>﹣【分析】根據(jù)根的判別式,令△>0,即可計算出m的值.【詳解】∵關(guān)于x的方程x2﹣x﹣m=0有兩個不相等實根,∴△=1﹣4×1×(﹣m)=1+4m>0,解得m>﹣.故答案為﹣.【點睛】本題考查了一元二次方程系數(shù)的問題,掌握根的判別式是解題的關(guān)鍵.三、解答題(共66分)19、(1);(2).【分析】(1)設(shè)點D的坐標為(4,m)(m>0),則點A的坐標為(4,3+m),由C為OA的中點可表示出點C的坐標,根據(jù)C、D點在反比例函數(shù)圖象上可得出關(guān)于k、m的二元一次方程租,解方程組即可得出結(jié)論;
(2)由m的值,可找出點A的坐標,由此即可得出線段OB、AB的長度,從而得出△OAB為等腰直角三角形,最后得出結(jié)果.【詳解】解:(1)設(shè)點的坐標為,則點的坐標為.點為線段的中點,點的坐標為.點均在反比例函數(shù)的圖象上,,解得,反比例函數(shù)的解析式為;(2),點的坐標為,,∴△OAB是等腰直角三角形,.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標特征、解直角三角形以及待定系數(shù)法求函數(shù)解析式等知識點,解決該題型題目時,利用反比例函數(shù)圖象上點的坐標特征找出方程組,通過解方程組得出點的坐標,再利用待定系數(shù)法求出函數(shù)解析式即可.20、(1)點A為旋轉(zhuǎn)中心;(1)旋轉(zhuǎn)了90°或170°;(3)四邊形ABCD的面積為15cm1.【分析】(1)根據(jù)圖形確定旋轉(zhuǎn)中心即可;(1)對應(yīng)邊AE、AF的夾角即為旋轉(zhuǎn)角,再根據(jù)正方形的每一個角都是直角解答;(3)根據(jù)旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小可得△BAE的面積等于△DAF的面積,從而得到四邊形ABCD的面積等于正方形AECF的面積,然后求解即可.【詳解】(1)由圖可知,點A為旋轉(zhuǎn)中心;(1)在四邊形ABCD中,∠BAD=90°,所以,旋轉(zhuǎn)了90°或170°;(3)由旋轉(zhuǎn)性質(zhì)知,AE=AF,∠F=∠AEB=∠AEC=∠C=90°∴四邊形AECF是正方形,∵△BEA旋轉(zhuǎn)后能與△DFA重合,∴△BEA≌△DFA,∴S△BEA=S△DFA,∴四邊形ABCD的面積=正方形AECF的面積,∵AE=5cm,∴四邊形ABCD的面積=51=15cm1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì)以及旋轉(zhuǎn)中心的確定,旋轉(zhuǎn)角的確定,以及旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小的性質(zhì).21、(1)見解析(2)【分析】(1)利用列表法展示所有12種等可能的結(jié)果數(shù);(2)找出小明參加總決賽抽取題目是成語題目的結(jié)果數(shù),然后根據(jù)概率公式計算即可.【詳解】(1)使用列表的方法表示小明參加總決賽抽取題目的所有可能結(jié)果二一(2)小明參加總決賽抽取題目都是成語題目的概率為【點睛】此題考查概率公式與列表法,解題關(guān)鍵在于利用列表法列出所有結(jié)果22、(1)詳見解析;(2)10;(3)詳見解析【分析】(1)依據(jù)點O為位似中心,且位似比為2:1,即可得到△A′B′C′;(2)依據(jù)割補法進行計算,即可得出△A′B′C′的面積;(3)依據(jù)△A′B′D′的面積等于△A′B′C′的面積,即可得到所有符合條件的點D′.【詳解】解:(1)如圖所示,△A′B′C′即為所求;(2)△A′B′C′的面積為4×6﹣×2×4﹣×2×4﹣×2×6=24﹣4﹣4﹣6=10;故答案為:10;(3)如圖所示,所有符合條件的點D′有5個.【點睛】此題主要考查位似圖形的作圖,解題的關(guān)鍵是熟知位似圖形的性質(zhì)及網(wǎng)格的特點.23、(1)證明見解析;(2);(3)當,;當,.【分析】(1)先利用角平分線的性質(zhì),得,,再利用外角、三角形內(nèi)角和進行換算即可;(2)延長AD,構(gòu)造平行相似,得到,再按條件進行計算;(3)利用△ABC與△ADE相似,得到,所以得到或,再利用三角函數(shù)求值.【詳解】(1)如圖1中∵∴,∵AD平分∴,同理得∵,∴∴(2)延長AD交BC于點F∵∴BE平分∠ABC∴∴∴∴,∵∴(3)∵△ABC與△ADE相似,∴∠ABC中必有一個內(nèi)角和為90°∵∠ABC是銳角∴當時∵∴∵∴,∵分別是的內(nèi)角的平分線∴∴∵∴代入解得②當時∵△ABC與△ADE相似∴∵分別是的內(nèi)角的平分線∴∴此時綜上所述,當,;當,【點睛】本題考查了相似三角形的綜合題,掌握相似三角形的判定和性質(zhì)、平行線的判定和性質(zhì)以及銳角三角函數(shù)是解題的關(guān)鍵.24、(1)見解析;(2)【分析】(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;(2)連接AC,可證AB=BC,由勾股定理可求出BD=.【詳解】(1)證明:∵∠ABD=90°,E是AD的中點,∴BE=DE=AE,∵AD=2BC,∴BC=DE,∵AD∥BC,∴四邊形BCDE為平行四邊形,∵BE=DE,∴四邊形BCDE為菱形;(2)連接AC,如圖,∵由(1)得BC=BE,AD∥BC,∴四邊形ABCE為平行四邊形,∵AC⊥BE,∴四邊形ABCE為菱形,∴BC=AB=2,AD=2BC=4,∵∠ABD=90°,∴BD===.【點睛】本題考查菱形的判定和性質(zhì)、直角三角形斜邊中線的性質(zhì)、等腰三角形的判定,勾股定理等知識,解題的關(guān)鍵是熟練掌握菱形的判定方法25、(1)y=﹣x2+2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度建筑工地臨時用工人員工資支付與爭議調(diào)解協(xié)議3篇
- 應(yīng)急管理概論 教學大綱
- 企業(yè)流程管理培訓(xùn)
- 二零二五年度廣告銷售渠道拓展合同范本3篇
- ChatGPT助推學校教育數(shù)字化轉(zhuǎn)型-人工智能時代學什么與怎么教
- 航空母艦發(fā)展史
- 炒菜放料知識培訓(xùn)課件
- 山西省朔州市懷仁市2024-2025學年七年級上學期1月期末生物試題(無答案)
- Unit6 Shopping A let's spell (說課稿)-2023-2024學年人教PEP版英語四年級下冊
- 第16章 分式 評估測試卷(含答案)2024-2025學年數(shù)學華東師大版八年級下冊
- 春聯(lián)課件教學課件
- 北師大版五年級上冊脫式計算400道及答案
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 地理試題
- 8《美麗文字 民族瑰寶》教學設(shè)計2023-2024學年統(tǒng)編版道德與法治五年級上冊
- 2024年工業(yè)廢水處理工(初級)技能鑒定考試題庫(含答案)
- 2024新滬教版英語初一上單詞表(英譯漢)
- NB/T 11446-2023煤礦連采連充技術(shù)要求
- 人教版八年級上冊生物期末必刷15道識圖題
- SY-T 6966-2023 輸油氣管道工程安全儀表系統(tǒng)設(shè)計規(guī)范
- 學生公寓管理員培訓(xùn)
- 固體廢棄物循環(huán)利用項目風險管理方案
評論
0/150
提交評論