![新疆巴州三中2024屆高一數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view11/M03/0C/2C/wKhkGWWrKyeAVTeqAAGCHrr3oI4469.jpg)
![新疆巴州三中2024屆高一數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view11/M03/0C/2C/wKhkGWWrKyeAVTeqAAGCHrr3oI44692.jpg)
![新疆巴州三中2024屆高一數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view11/M03/0C/2C/wKhkGWWrKyeAVTeqAAGCHrr3oI44693.jpg)
![新疆巴州三中2024屆高一數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view11/M03/0C/2C/wKhkGWWrKyeAVTeqAAGCHrr3oI44694.jpg)
![新疆巴州三中2024屆高一數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view11/M03/0C/2C/wKhkGWWrKyeAVTeqAAGCHrr3oI44695.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
新疆巴州三中2024屆高一數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.如圖所示,是頂角為的等腰三角形,且,則A. B.C. D.2.是邊長為1的等邊三角形,點分別是邊的中點,連接并延長到點,使得,則的值為()A. B.C. D.3.函數(shù)f(x)=ax(a>0,a≠1)對于任意的實數(shù)xA.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)C.f(xy)=f(x)+f(y) D.f(x+y)=f(x)+f(y)4.最小值是A.-1 B.C. D.15.已知,,且,均為銳角,那么()A. B.或-1C.1 D.6.設(shè),則函數(shù)的零點所在的區(qū)間為()A. B.C. D.7.已知函數(shù)的圖象上關(guān)于軸對稱的點至少有3對,則實數(shù)的取值范圍是A. B.C. D.8.已知點,.若過點的直線l與線段相交,則直線的斜率k的取值范圍是()A. B.C.或 D.9.已知弧長為的弧所對的圓心角為,則該弧所在的扇形面積為()A. B.C. D.10.在平面直角坐標系中,角以為始邊,終邊與單位圓交于點,則()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知,則____________.12.計算:__________,__________13.冪函數(shù)的圖象經(jīng)過點,則________14.下列五個結(jié)論:集合2,3,4,5,,集合,若f:,則對應(yīng)關(guān)系f是從集合A到集合B的映射;函數(shù)的定義域為,則函數(shù)的定義域也是;存在實數(shù),使得成立;是函數(shù)的對稱軸方程;曲線和直線的公共點個數(shù)為m,則m不可能為1;其中正確有______寫出所有正確的序號15.16/17世紀之交,隨著天文、航海、工程、貿(mào)易以及軍事的發(fā)展,改進數(shù)字計算方法成了當務(wù)之急,約翰納皮爾正是在研究天文學(xué)的過程中,為了簡化其中的計算而發(fā)明了對數(shù).后來天才數(shù)學(xué)家歐拉發(fā)現(xiàn)了對數(shù)與指數(shù)的關(guān)系,即.現(xiàn)在已知,,則__________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.(1)求的值;(2)求的值17.已知函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;(2)若,且,求的值.18.設(shè)函數(shù),且,函數(shù)(1)求的解析式;(2)若方程-b=0在[-2,2]上有兩個不同的解,求實數(shù)b的取值范圍19.已知向量,函數(shù)圖象相鄰兩條對稱軸之間的距離為.(1)求的解析式;(2)若且,求的值.20.已知,求的值.21.已知角的頂點在原點,始邊與x軸的非負半軸重合,終邊經(jīng)過點(1)求的值;(2)求的值
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】【詳解】∵是頂角為的等腰三角形,且∴∴故選C2、B【解析】設(shè),,∴,,,∴.【考點】向量數(shù)量積【名師點睛】研究向量的數(shù)量積問題,一般有兩個思路,一是建立直角坐標系,利用坐標研究向量數(shù)量積;二是利用一組基底表示所有向量,兩種實質(zhì)相同,坐標法更易理解和化簡.平面向量的坐標運算的引入為向量提供了新的語言——“坐標語言”,實質(zhì)是將“形”化為“數(shù)”.向量的坐標運算,使得向量的線性運算都可用坐標來進行,實現(xiàn)了向量運算完全代數(shù)化,將數(shù)與形緊密結(jié)合起來3、B【解析】由指數(shù)的運算性質(zhì)得到ax+y【詳解】解:由函數(shù)f(x)=a得f(x+y)=a所以函數(shù)f(x)=ax(a>0,a≠1)對于任意的實數(shù)x、y故選:B.【點睛】本題考查了指數(shù)的運算性質(zhì),是基礎(chǔ)題.4、B【解析】∵,∴當sin2x=-1即x=時,函數(shù)有最小值是,故選B考點:本題考查了三角函數(shù)的有界性點評:熟練掌握二倍角公式及三角函數(shù)的值域是解決此類問題的關(guān)鍵,屬基礎(chǔ)題5、A【解析】首先確定角,接著求,,最后根據(jù)展開求值即可.【詳解】因為,均為銳角,所以,所以,,所以.故選:A.【點睛】(1)給值求值問題一般是正用公式將所求“復(fù)角”展開,看需要求相關(guān)角的哪些三角函數(shù)值,然后根據(jù)角的范圍求出相應(yīng)角的三角函數(shù)值,代入展開式即可(2)通過求所求角的某種三角函數(shù)值來求角,關(guān)鍵點在選取函數(shù),常遵照以下原則:①已知正切函數(shù)值,選正切函數(shù);②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是(0,π),選余弦較好;若角的范圍為,選正弦較好6、B【解析】根據(jù)的單調(diào)性,結(jié)合零點存在性定理,即可得出結(jié)論.【詳解】在單調(diào)遞增,且,根據(jù)零點存在性定理,得存在唯一的零點在區(qū)間上.故選:B【點睛】本題考查判斷函數(shù)零點所在區(qū)間,結(jié)合零點存在性定理的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】本題首先可以求出函數(shù)關(guān)于軸對稱的函數(shù)的解析式,然后根據(jù)題意得出函數(shù)與函數(shù)的圖像至少有3個交點,最后根據(jù)圖像計算得出結(jié)果【詳解】若,則,因為時,,所以,所以若關(guān)于軸對稱,則有,即,設(shè),畫出函數(shù)的圖像,結(jié)合函數(shù)的單調(diào)性和函數(shù)圖像的凹凸性可知對數(shù)函數(shù)與三角函數(shù)在點處相交為臨界情況,即要使與的圖像至少有3個交點,需要且滿足,即,解得,故選D【點睛】本題考查的是函數(shù)的對稱性、對數(shù)函數(shù)以及三角函數(shù)的相關(guān)性質(zhì),主要考查如何根據(jù)函數(shù)對稱性來求出函數(shù)解析式,考查學(xué)生對對數(shù)函數(shù)以及三角函數(shù)的圖像的理解,考查推理能力,考查數(shù)形結(jié)合思想,是難題8、D【解析】由已知直線恒過定點,如圖若與線段相交,則,∵,,∴,故選D.9、B【解析】先求得扇形的半徑,由此求得扇形面積.【詳解】依題意,扇形的半徑為,所以扇形面積為.故選:B10、A【解析】根據(jù)任意角三角函數(shù)的概念可得出,然后利用誘導(dǎo)公式求解.【詳解】因為角以為始邊,且終邊與單位圓交于點,所以,則.故選:A.【點睛】當以為始邊,已知角終邊上一點的坐標為時,則,.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】求得函數(shù)的最小正周期為,進而計算出的值(其中),再利用周期性求解即可.【詳解】函數(shù)的最小正周期為,當時,,,,,,,所以,,,因此,.故答案為:.12、①.0②.-2【解析】答案:0,13、【解析】設(shè)冪函數(shù)的解析式,然后代入求解析式,計算.【詳解】設(shè),則,解得,所以,得故答案為:14、【解析】由,,結(jié)合映射的定義可判斷;由由,解不等式可判斷;由輔助角公式和正弦函數(shù)的值域,可判斷;由正弦函數(shù)的對稱軸,可判斷;由的圖象可判斷交點個數(shù),可判斷【詳解】由于,,B中無元素對應(yīng),故錯誤;函數(shù)的定義域為,由,可得,則函數(shù)的定義域也是,故正確;由于的最大值為,,故不正確;由為最小值,是函數(shù)的對稱軸方程,故正確;曲線和直線的公共點個數(shù)為m,如圖所示,m可能為0,2,3,4,則m不可能為1,故正確,故答案為【點睛】本題主要考查函數(shù)的定義域、值域和對稱性、圖象交點個數(shù),考查運算能力和推理能力,屬于基礎(chǔ)題15、2【解析】先根據(jù)要求將指數(shù)式轉(zhuǎn)為對數(shù)式,作乘積運算時注意使用換底公式去計算.【詳解】∵,∴,∴故答案為2【點睛】底數(shù)不同的兩個對數(shù)式進行運算時,有時可以利用換底公式:將其轉(zhuǎn)化為同底數(shù)的對數(shù)式進行運算.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1);(2)【解析】(1)根據(jù)指數(shù)冪的運算性質(zhì),化簡計算,即可得答案.(2)根據(jù)對數(shù)的運算性質(zhì),化簡計算,即可得答案.【詳解】(1)原式;(2)原式17、(1)(2)【解析】(1)運用兩角和(差)的正弦公式、二倍角的正余弦公式、輔助角公式化簡函數(shù)的解析式,最后根據(jù)正弦型函數(shù)的最小正周期公式進行求解即可;(2)運用換元法,結(jié)合正弦函數(shù)的性質(zhì)進行求解即可.【小問1詳解】故的最小正周期為,由得,所以增區(qū)間是;【小問2詳解】由(1)知由得:,因為,所以,所以18、(1),(2)【解析】(1);本題求函數(shù)解析式只需利用指數(shù)的運算性質(zhì)求出a的值即可,(2)對于同時含有的表達式,通常可以令進行換元,但換元的過程中一定要注意新元的取值范圍,換元后轉(zhuǎn)化為我們熟悉的一元二次的關(guān)系,從而解決問題試題解析:解:(1)∵,且∴∵∴(2)法一:方程為令,則-且方程為在有兩個不同的解設(shè),兩函數(shù)圖象在內(nèi)有兩個交點由圖知時,方程有兩不同解.法二:方程為,令,則∴方程在上有兩個不同的解.設(shè)解得考點:求函數(shù)的解析式,求參數(shù)的取值范圍【方法點睛】求函數(shù)解析式的主要方法有待定系數(shù)法,換元法及賦值消元法等;已知函數(shù)的類型(如一次函數(shù),二次函數(shù),指數(shù)函數(shù)等),就可用待定系數(shù)法;已知復(fù)合函數(shù)的解析式,可用換元法,此時要注意自變量的取值范圍;求分段函數(shù)的解析式時,一定要明確自變量的所屬范圍,以便于選擇與之對應(yīng)的對應(yīng)關(guān)系,避免出錯19、(1);(2).【解析】(1)利用數(shù)量積及三角恒等變換知識化簡得;(2)由,可得,進而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中外設(shè)備買賣合同模板
- 上海金融服務(wù)外包合作合同模板匯集
- 臨時教學(xué)樓改建工程合同
- 個人住房貸款合同樣本
- 臨時合作關(guān)系合同書
- 二手房購入合同范文:完整版
- 三人合伙投資合同范本
- 個人商業(yè)貸款抵押合同(1997年)版
- 個人債務(wù)履行擔保合同示例
- 個人定向捐贈合同模板修訂版
- PDCA提高患者自備口服藥物正確堅持服用落實率
- 上海石油化工股份有限公司6181乙二醇裝置爆炸事故調(diào)查報告
- 家譜人物簡介(優(yōu)選12篇)
- 品管部崗位職責20篇
- 2023年中智集團下屬中智股份公司招聘筆試題庫及答案解析
- GA 1409-2017警用服飾硬式肩章
- 小兒垂釣 (課件)(14張)
- 嘉吉樂恩貝1-FarLactation課件
- 激光拉曼光譜技術(shù)課件
- DB33-T 2082-2017(2021)托幼機構(gòu)消毒衛(wèi)生規(guī)范
- 提高攜帶雙J管患者的健康教育落實率泌尿科品管圈課件
評論
0/150
提交評論