版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省綿陽市綿陽中學2023年高一上數(shù)學期末綜合測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.定義在上的偶函數(shù)滿足:對任意的,,,有,且,則不等式的解集為A. B.C. D.2.定義在上的奇函數(shù),當時,,則不等式的解集為()A. B.C. D.3.已知全集,集合,集合,則A. B.C. D.4.若,分別是方程,的解,則關于的方程的解的個數(shù)是()A B.C. D.5.某組合體的三視圖如下,則它的體積是A. B.C. D.6.已知函數(shù)則值域為()A. B.C. D.7.下列四個函數(shù)中,與函數(shù)相等的是A. B.C. D.8.設,,那么等于A. B.C. D.9.函數(shù)的零點所在區(qū)間是A. B.C. D.10.,,這三個數(shù)之間的大小順序是()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.若函數(shù)在區(qū)間上是單調遞增函數(shù),則實數(shù)的取值范圍是_______.12.若,則的最小值是___________,此時___________.13.已知函數(shù)是冪函數(shù),且過點,則___________.14.把函數(shù)的圖像向右平移后,再把各點橫坐標伸長到原來的2倍,所得函數(shù)解析式是______15.函數(shù)的最大值為__________三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.某農戶利用墻角線互相垂直的兩面墻,將一塊可折疊的長為am的籬笆墻圍成一個雞圈,籬笆的兩個端點A,B分別在這兩墻角線上,現(xiàn)有三種方案:方案甲:如圖1,圍成區(qū)域為三角形;方案乙:如圖2,圍成區(qū)域為矩形;方案丙:如圖3,圍成區(qū)域為梯形,且.(1)在方案乙、丙中,設,分別用x表示圍成區(qū)域的面積,;(2)為使圍成雞圈面積最大,該農戶應該選擇哪一種方案,并說明理由.17.已知函數(shù)是偶函數(shù)(1)求實數(shù)的值(2)設,若函數(shù)與的圖象有且只有一個公共點,求實數(shù)的取值范圍18.已知函數(shù).(1)直接寫出的單調區(qū)間,并選擇一個單調區(qū)間根據(jù)定義進行證明;(2)解不等式.19.已知函數(shù)的圖像如圖所示.(1)求函數(shù)的解析式;(2)當時,求函數(shù)的最大值和最小值.20.如圖,在矩形中,點是邊上中點,點在邊上(1)若點是上靠近的三等分點,設,求的值(2)若,當時,求的長21.某同學作函數(shù)f(x)=Asin(x+)在一個周期內的簡圖時,列表并填入了部分數(shù)據(jù),如下表:0-3(1)請將上表數(shù)據(jù)補充完整,并求出f(x)的解析式;(2)若f(x)在區(qū)間(m,0)內是單調函數(shù),求實數(shù)m的最小值.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】根據(jù)對任意的,,,有,判斷函數(shù)的單調性,結合函數(shù)的奇偶性和單調性之間的性質,將不等式轉化為不等式組,數(shù)形結合求解即可詳解】因為對任意的,,當,有,所以,當函數(shù)為減函數(shù),又因為是偶函數(shù),所以當時,為增函數(shù),,,作出函數(shù)的圖象如圖:等價為或,由圖可知,或,即不等式的解集為,故選A【點睛】本題主要考查抽象函數(shù)的奇偶性與單調性的應用,屬于難題.將奇偶性與單調性綜合考查一直是命題的熱點,解這種題型往往是根據(jù)函數(shù)在所給區(qū)間上的單調性,根據(jù)奇偶性判斷出函數(shù)在對稱區(qū)間上的單調性(偶函數(shù)在對稱區(qū)間上單調性相反,奇函數(shù)在對稱區(qū)間單調性相同),然后再根據(jù)單調性列不等式求解.2、D【解析】當時,為單調增函數(shù),且,則的解集為,再結合為奇函數(shù),可得答案【詳解】當時,,所以在上單調遞增,因為,所以當時,等價于,即,因為是定義在上的奇函數(shù),所以時,在上單調遞增,且,所以等價于,即,所以不等式的解集為故選:D3、C【解析】先求出,再和求交集即可.【詳解】因全集,集合,所以,又,所以.故選C【點睛】本題主要考查集合的混合運算,熟記概念即可,屬于基礎題型.4、B【解析】∵,分別是方程,的解,∴,,∴,,作函數(shù)與的圖象如下:結合圖象可以知道,有且僅有一個交點,故,即分類討論:()當時,方程可化為,計算得出,()當時,方程可化,計算得出,;故關于的方程的解的個數(shù)是,本題選擇B選項.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內到外依次求值(2)當給出函數(shù)值求自變量的值時,先假設所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍5、A【解析】,故選A考點:1、三視圖;2、體積【方法點晴】本題主要考查三視圖和錐體的體積,計算量較大,屬于中等題型.應注意把握三個視圖的尺寸關系:主視圖與俯視圖長應對正(簡稱長對正),主視圖與左視圖高度保持平齊(簡稱高平齊),左視圖與俯視圖寬度應相等(簡稱寬相等),若不按順序放置和不全時,則應注意三個視圖名稱.此外本題應注意掌握錐體和柱體的體積公式6、C【解析】先求的范圍,再求的值域.【詳解】令,則,則,故選:C7、D【解析】分別化簡每個選項的解析式并求出定義域,再判斷是否與相等.【詳解】A選項:解析式為,定義域為R,解析式不相同;B選項:解析式為,定義域為,定義域不相同;C選項:解析式為,定義域為,定義域不相同;D選項:解析式為,定義域為R,符合條件,答案為D.【點睛】函數(shù)相等主要看:(1)解析式相同;(2)定義域相同.屬于基礎題.8、B【解析】由題意得.選B9、B【解析】通過計算,判斷出零點所在的區(qū)間.【詳解】由于,,,故零點在區(qū)間,故選B.【點睛】本小題主要考查零點的存在性定理的應用,考查函數(shù)的零點問題,屬于基礎題.10、C【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質比較即可【詳解】解:因為在上為減函數(shù),且,所以,因為在上為增函數(shù),且,所以,因為在上為增函數(shù),且,所以,綜上,,故選:C二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】先求出拋物線的對稱軸方程,然后由題意可得,解不等式可求出的取值范圍【詳解】解:函數(shù)的對稱軸方程為,因為函數(shù)在區(qū)間上是單調遞增函數(shù),所以,解得,故答案為:12、①.1②.0【解析】利用基本不等式求解.【詳解】因為,所以,當且僅當,即時,等號成立,所以其最小值是1,此時0,故答案為:1,013、【解析】由題意,設代入點坐標可得,計算即得解【詳解】由題意,設,過點故,解得故則故答案為:14、【解析】利用三角函數(shù)圖像變換規(guī)律直接求解【詳解】解:把函數(shù)的圖像向右平移后,得到,再把各點橫坐標伸長到原來的2倍,得到,故答案為:15、【解析】利用二倍角余弦公式,把問題轉化為關于的二次函數(shù)的最值問題.【詳解】,又,∴函數(shù)的最大值為.故答案為:.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1),;,.(2)農戶應該選擇方案三,理由見解析.【解析】(1)根據(jù)矩形面積與梯形的面積公式表示即可得答案;(2)先根據(jù)基本不等式研究方案甲得面積的最大值為,再根據(jù)二次函數(shù)的性質結合(1)研究,的最大值即可得答案.【小問1詳解】解:對于方案乙,當時,,所以矩形的面積,;對于方案丙,當時,,由于所以,所以梯形面積為,.【小問2詳解】解:對于方案甲,設,則,所以三角形的面積為,當且僅當時等號成立,故方案甲的雞圈面積最大值為.對于方案乙,由(1)得,,當且僅當時取得最大值.故方案乙的雞圈面積最大值為;對于方案丙,,.當且僅當時取得最大值.故方案丙的雞圈面積最大值為;由于所以農戶應該選擇方案丙,此時雞圈面積最大.17、(1)(2)【解析】(1)根據(jù)是偶函數(shù),由成立求解;(2)函數(shù)與圖象有且只有一個公共點,即方程有且只有一個根,令,轉化為方程有且只有一個正根求解.【小問1詳解】解:函數(shù),因為是偶函數(shù),所以,即,即對一切恒成立,所以;【小問2詳解】因為函數(shù)與的圖象有且只有一個公共點,所以方程有且只有一個根,即方程有且只有一個根,令,則方程有且只有一個正根,當時,解得,不合題意;當時,開口向上,且過定點,符合題意,當時,,解得,綜上:實數(shù)的取值范圍是.18、(1)在區(qū)間,上單調遞增,在區(qū)間上單調遞減,證明見解析(2)【解析】(1)根據(jù)增減函數(shù)的定義,利用作差法比較與0的大小即可;(2)根據(jù)三角函數(shù)的性質可得、,利用函數(shù)的單調性列出三角不等式,解不等式即可.【小問1詳解】在區(qū)間,上單調遞增,在區(qū)間上單調遞減.①選區(qū)間進行證明.,,且,有,由,所以,由,所以,所以,,所以在區(qū)間上單調遞增.②選區(qū)間進行證明.,,且,有,由,,所以,,所以在區(qū)間上單調遞減.③選區(qū)間進行證明.參考②的證明,在區(qū)間上單調遞增.【小問2詳解】,因為,,在區(qū)間上單調遞減,所以,(),所以,所求解集為.19、(1);(2)最大值,最小值為-1.【解析】(1)由圖可知,,可得,再將點代入得,結合,可得的值,即可求出函數(shù)的解析式;(2)根據(jù)函數(shù)的周期,可求時函數(shù)的最大值和最小值就是轉化為求函數(shù)在區(qū)間上的最大值和最小值,結合三角函數(shù)圖象,即可求出函數(shù)的最大值和最小值.試題解析:(1)由圖可知:,則∴,將點代入得,,∴,,即,∵∴∴函數(shù)的解析式為.(2)∵函數(shù)的周期是∴求時函數(shù)的最大值和最小值就是轉化為求函數(shù)在區(qū)間上的最大值和最小值.由圖像可知,當時,函數(shù)取得最大值為,當時,函數(shù)取得最小值為.∴函數(shù)在上的最大值為,最小值為-1.點睛:已知圖象求函數(shù)解析式的方法(1)根據(jù)圖象得到函數(shù)的周期,再根據(jù)求得(2)可根據(jù)代點法求解,代點時一般將最值點的坐標代入解析式;也可用“五點法”求解,用此法時需要先判斷出“第一點”的位置,再結合圖象中的點求出的值(3)在本題中運用了代點的方法求得的值,一般情況下可通過觀察圖象得到的值20、(1);(2).【解析】(1),∵是邊的中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西京學院《微機原理與接口技術》2022-2023學年期末試卷
- 西南林業(yè)大學《地理信息系統(tǒng)原理與應用》2022-2023學年第一學期期末試卷
- 從事專業(yè)與所學專業(yè)不一致專業(yè)技術人員申報職稱崗位任職合格證明附件6
- 西京學院《電機學實驗》2021-2022學年期末試卷
- 西華師范大學《中學思想政治學科教學論》2021-2022學年第一學期期末試卷
- 西華師范大學《音樂作品分析與寫作》2023-2024學年第一學期期末試卷
- 西華師范大學《文藝作品演播》2022-2023學年第一學期期末試卷
- 2024-2025學年高中物理舉一反三系列專題4.1 普朗克黑體輻射理論(含答案)
- 房地產金融與投資概論教學課件第二章房地產抵押貸款
- 匆匆 朱自清課件
- 跨平臺游戲互操作性和可移植性
- 重慶市綦江縣彩虹橋整體垮塌事故分析處理報告
- 網課智慧樹知道《文書學(四川大學)》章節(jié)測試答案
- 人教版 九年級上冊音樂 第五單元 大紅棗兒甜又香 教案
- 在線網課知道知慧《災害學(山東科大)》單元測試答案
- 2024年寧波市奉化區(qū)文化旅游集團有限公司招聘筆試沖刺題(帶答案解析)
- 統(tǒng)編版教材一至六年級日積月累
- 2024年新修訂公司法知識題庫及答案
- 臺球廳桌球俱樂部創(chuàng)業(yè)計劃書課件模板
- 口腔科醫(yī)療污水處置登記表
- 習近平總書記教育重要論述講義智慧樹知到期末考試答案章節(jié)答案2024年西南大學
評論
0/150
提交評論