版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海外國語大學附屬浦東外國語學校2024屆數(shù)學高一上期末預測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.設,則()A. B.C. D.2.已知函數(shù),若關于的方程有8個不等的實數(shù)根,則的取值范圍是A. B.C. D.3.與函數(shù)的圖象不相交的一條直線是()A. B.C. D.4.已知為平面,為直線,下列命題正確的是A.,若,則B.,則C.,則D.,則5.已知點M在曲線上,點N在曲線:上,則|MN|的最小值為()A.1 B.2C.3 D.46.已知奇函數(shù)的定義域為,其圖象是一條連續(xù)不斷的曲線.若,則函數(shù)在區(qū)間內(nèi)的零點個數(shù)至少為()A.1 B.2C.3 D.47.已知向量,滿足,,且與夾角為,則()A. B.C. D.8.已知的值為A.3 B.8C.4 D.9.若函數(shù)在區(qū)間上存在零點,則實數(shù)的取值范圍是A. B.C. D.10.如圖,在正三棱柱中,,若二面角的大小為,則點C到平面的距離為()A.1 B.C. D.11.如圖,在正方體中,分別為的中點,則異面直線與所成的角等于A. B.C. D.12.已知全集,集合,集合,則A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知向量,,,,則與夾角的余弦值為______14.已知在同一平面內(nèi),為銳角,則實數(shù)組成的集合為_________15.將函數(shù)圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式為________.16.已知函數(shù),則=____________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知(1)求的值(2)的值18.已知直線經(jīng)過兩條直線:和:的交點,直線:;(1)若,求的直線方程;(2)若,求的直線方程19.化簡下列各式:(1);(2).20.已知,,,.當k為何值時:(1);(2).21.(1)計算:()0.5+(-3)-1÷0.75-2-;(2)設0<a<1,解關于x的不等式.22.已知x∈R,集合A中含有三個元素3,x,x2-2x.(1)求元素x滿足的條件;(2)若-2∈A,求實數(shù)x.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】由,則,再由指數(shù)、對數(shù)函數(shù)的單調(diào)性得出大小,得出答案.【詳解】由,則,,所以故選:D2、D【解析】畫出函數(shù)的圖象,利用函數(shù)的圖象,判斷的范圍,然后利用二次函數(shù)的性質求解的范圍【詳解】解:函數(shù),的圖象如圖:關于的方程有8個不等的實數(shù)根,必須有兩個不相等的實數(shù)根且兩根位于之間,由函數(shù)圖象可知,.令,方程化為:,,,開口向下,對稱軸為:,可知:的最大值為:,的最小值為:2故選:【點睛】本題考查函數(shù)與方程的應用,函數(shù)的零點個數(shù)的判斷與應用,考查數(shù)形結合以及計算能力,屬于中檔題3、C【解析】由題意求函數(shù)的定義域,即可求得與函數(shù)圖象不相交的直線.【詳解】函數(shù)的定義域是,解得:,當時,,函數(shù)的圖象不相交的一條直線是.故選:C【點睛】本題考查正切函數(shù)的定義域,屬于簡單題型.4、D【解析】選項直線有可能在平面內(nèi);選項需要直線在平面內(nèi)才成立;選項兩條直線可能異面、平行或相交.選項符合面面平行的判定定理,故正確.5、B【解析】根據(jù)圓的一般方程得出圓的標準方程,并且得圓的圓心和半徑,計算兩圓圓心的距離后就可以求解.【詳解】由題意知:圓:,的坐標是,半徑是,圓:,的坐標是,半徑是.所以,因此兩圓相離,所以最小值為.故選:B6、C【解析】根據(jù)奇函數(shù)的定義域為R可得,由和奇函數(shù)的性質可得、,利用零點的存在性定理即可得出結果.【詳解】奇函數(shù)的定義域為R,其圖象為一條連續(xù)不斷的曲線,得,由得,所以,故函數(shù)在之間至少存在一個零點,由奇函數(shù)的性質可知函數(shù)在之間至少存在一個零點,所以函數(shù)在之間至少存在3個零點.故選:C7、D【解析】根據(jù)向量的運算性質展開可得,再代入向量的數(shù)量積公式即可得解.【詳解】根據(jù)向量運算性質,,故選:D8、A【解析】主要考查指數(shù)式與對數(shù)式的互化和對數(shù)運算解:9、C【解析】由函數(shù)的零點的判定定理可得f(﹣1)f(1)<0,解不等式求得實數(shù)a的取值范圍【詳解】由題,函數(shù)f(x)=ax+1單調(diào),又在區(qū)間(﹣1,1)上存在一個零點,則f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故選C【點睛】本題主要考查函數(shù)的零點的判定定理的應用,屬于基礎題10、C【解析】取的中點,連接和,由二面角的定義得出,可得出、、的值,由此可計算出和的面積,然后利用三棱錐的體積三棱錐的體積相等,計算出點到平面的距離.【詳解】取的中點,連接和,根據(jù)二面角的定義,.由題意得,所以,.設到平面的距離為,易知三棱錐的體積三棱錐的體積相等,即,解得,故點C到平面的距離為.故選C.【點睛】本題考查點到平面距離的計算,常用的方法有等體積法與空間向量法,等體積法本質就是轉化為三棱錐的高來求解,考查計算能力與推理能力,屬于中等題.11、B【解析】取的中點,則由三角形的中位線的性質可得平行且等于的一半,故或其補角即為異面直線與所成的角.設正方體的棱長為1,則,,故為等邊三角形,故∠EGH=60°考點:空間幾何體中異面直線所成角.【思路點睛】本題主要考查異面直線所成的角的定義和求法,找出兩異面直線所成的角,是解題的關鍵,體現(xiàn)了等價轉化的數(shù)學思想.取的中點,由三角形的中位線的性質可得或其補角即為異面直線與所成的角.判斷為等邊三角形,從而求得異面直線與所成的角的大小12、C【解析】先求出,再和求交集即可.【詳解】因全集,集合,所以,又,所以.故選C【點睛】本題主要考查集合的混合運算,熟記概念即可,屬于基礎題型.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】運用平面向量的夾角公式可解決此問題.【詳解】根據(jù)題意得,,,,故答案為.【點睛】本題考查平面向量夾角公式的簡單應用.平面向量數(shù)量積公式有兩種形式,一是,二是,主要應用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).14、【解析】分析:根據(jù)夾角為銳角得向量數(shù)量積大于零且向量不共線,解得實數(shù)組成的集合.詳解:因為為銳角,所以且不共線,所以因此實數(shù)組成的集合為,點睛:向量夾角為銳角的充要條件為向量數(shù)量積大于零且向量不共線,向量夾角為鈍角的充要條件為向量數(shù)量積小于零且向量不共線.15、.【解析】由題意利用函數(shù)的圖象變換規(guī)律,即可得出結論.【詳解】將函數(shù)圖象上所有的點向右平行移動個單位長度,可得函數(shù)為,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),可得函數(shù)為.故答案為:.16、【解析】由函數(shù)解析式,先求得,再求得代入即得解.【詳解】函數(shù),則==,故答案為.【點睛】本題考查函數(shù)值的求法,屬于基礎題.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)(2)【解析】(1)先求出的值,再求出后可得的值;(2)先求出,再利用二倍角公式化簡三角函數(shù)式,代入前面的結果可得所求的值.【小問1詳解】對于,兩邊平方得,所以,∴,∵且,,所以,;【小問2詳解】聯(lián)立,解得,∴原式=.18、(1);(2)【解析】(1)先求出與的交點,再利用兩直線平行斜率相等求直線l(2)利用兩直線垂直斜率乘積等于-1求直線l【詳解】(1)由,得,∴與的交點為.設與直線平行的直線為,則,∴.∴所求直線方程為.(2)設與直線垂直的直線為,則,解得∴所求直線方程為.【點睛】兩直線平行斜率相等,兩直線垂直斜率乘積等于-119、(1)0(2)1【解析】(1)由誘導公式化簡計算;(2)由誘導公式化簡即可得解【小問1詳解】;【小問2詳解】20、(1)或2;(2)【解析】(1)根據(jù)向量共線坐標公式列方程即可求解;(2)根據(jù)向量垂直坐標公式列方程即可求解【詳解】(1)若,有,整理為解得或2;(2)若,有,整理為解得:21、(1)0;(2){x|x>1}【解析】(1)根據(jù)指數(shù)冪的運算性質,化簡求值;(2)利用指數(shù)函數(shù)的單調(diào)性,即可求解不等式.【詳解】(1)原式(2)因為0<a<1,所以y=ax在(-∞,+∞)上為減函數(shù),因為,所以2x2-3x+2<2x2+2x-3,解得x>1.故x的解集為{x|x>1}.22、(1)x≠-1,且x≠0,且x≠3(2)x=-2.【解析】(1)由集合中元素的互異性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人與公司分紅合同范例
- 混凝土罐車轉讓合同范例
- 助理勞動合同范例
- 中標單位合同范例
- 合同范例編輯
- 房東法律合同范例
- 蝦塘承租合同范例
- 工作服包銷合同范例
- 去寫個人合同范例
- 建設工程合同范例2011
- 商場用電安全培訓
- 《中小學教育懲戒規(guī)則(試行)》宣講培訓
- 結清貨款合同范例
- 掛靠裝修公司合同范例
- 開題報告:職普融通與職業(yè)教育高質量發(fā)展:從國際經(jīng)驗到中國路徑創(chuàng)新
- 變、配電站防火制度范文(2篇)
- 九年級上冊人教版數(shù)學期末綜合知識模擬試卷(含答案)
- 重大版小英小學六年級上期期末測試
- 微積分知到智慧樹章節(jié)測試課后答案2024年秋銅陵學院
- 金融科技UI設計
- 湖南省邵陽市2023-2024學年高一上學期拔尖創(chuàng)新人才早期培養(yǎng)競賽(初賽)數(shù)學試題 含解析
評論
0/150
提交評論