版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
EnergyStorageforMiniGrids
StatusandProjectionsofBatteryDeployment
AnEnergyStoragePartnershipReport
EnergyStorageforMiniGrids
StatusandProjectionsofBatteryDeployment
ThisreportoftheEnergyStoragePartnershipispreparedbytheEnergy SectorManagementAssistanceProgram(ESMAP)withcontributionsfromtheAllianceforRuralElectrification(ARE),RicereasulSistemaEnergetico(RSE), LoughboroughUniversity,andtheInter-AmericanDevelopmentBank(IADB). TheEnergyStoragePartnershipisaglobalpartnershipconvenedbythe WorldBankGroupthroughESMAPEnergyStorageProgramtofosterinternationalcooperationtodevelopsustainableenergystorage
solutionsfordevelopingcountries.Formoreinformationvisit:
/the_energy_storage_partnership_esp
ii
ENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT
ABOUTESMAP
TheEnergySectorManagementAssistanceProgram(ESMAP)isapartnershipbetweentheWorldBankand
24partners
tohelplow-andmiddle-incomecountriesreducepovertyandboostgrowththroughsustainable
energysolutions.ESMAP’sanalyticalandadvisoryservicesarefullyintegratedwithintheWorldBank’scountryfinancingandpolicydialogueintheenergysector.ThroughtheWorldBankGroup(WBG),ESMAPworksto
acceleratetheenergytransitionrequiredtoachieve
SustainableDevelopmentGoal7
(SDG7)toensureaccesstoaffordable,reliable,sustainable,andmodernenergyforall.IthelpstoshapeWBGstrategiesandprogramstoachievethe
WBGClimateChangeActionPlan
targets.Learnmoreat:
?2023InternationalBankforReconstructionandDevelopment/TheWorldBank
1818HStreetNW,Washington,DC20433
Telephone:202-473-1000;Internet:
RightsandPermissions
Thematerialinthisworkissubjecttocopyright.BecausetheWorldBankencouragesdisseminationofits
knowledge,thisworkmaybereproduced,inwholeorinpart,fornoncommercialpurposesiffullattributionto
thisworkisgiven.Anyqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedtoWorldBankPublications,WorldBankGroup,1818HStreetNW,Washington,DC20433,USA;fax:+1-202-522-2625;e-mail:
pubrights@
.
Furthermore,theESMAPProgramManagerwouldappreciatereceivingacopyofthepublicationthatusesthispublicationforitssourcesentincareoftheaddressabove,orto
esmap@
.ThisworkisavailableundertheCreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)
/licenses/
by/3.0/igo
.UndertheCreativeCommonsAttributionlicense,youarefreetocopy,distribute,transmit,andadaptthiswork,includingforcommercialpurposes,underthefollowingconditions:
Attribution—EnergySectorManagementAssistanceProgram(ESMAP).2023.EnergyStorageforMiniGrids:StatusandProjectionsofBatteryDeployment.Washington,DC:WorldBank.
Translations—ThistranslationwasnotcreatedbyTheWorldBankandshouldnotbeconsideredanofficialWorldBanktranslation.TheWorldBankshallnotbeliableforanycontentorerrorinthistranslation.
Adaptations—ThisisanadaptationofanoriginalworkbyTheWorldBank.Viewsandopinionsexpressedintheadaptationarethesoleresponsibilityoftheauthor(s)oftheadaptationandarenotendorsedbyTheWorldBank.
Third-PartyContent—TheWorldBankdoesnotnecessarilyowneachcomponentofthecontentcontained
withintheworkanddoesnotwarrantthattheuseofanythird-partyownedindividualcomponentorpart
containedintheworkwillnotinfringeontherightsofthosethirdparties.Ifyouwishtoreuseacomponentofthework,itisyourresponsibilitytodeterminewhetherpermissionisneededforthatreuseandtoobtainpermissionfromthecopyrightowner.Examplesofcomponentscaninclude,butarenotlimitedto,tables,figures,or
images.
ProductionCredits
ProductionEditor|HeatherAustin
Designer|CircleGraphics,Inc.
FrontCover|?IRENA
BackCover|?IRENA
Allimagesremainthesolepropertyoftheirsourceandmaynotbeusedforanypurposewithoutwrittenpermissionfromthesource.
TABLEOFCONTENTS
ABBREVIATIONS VII
ACKNOWLEDGMENTS VIII
KEYFINDINGS IX
EXECUTIVESUMMARY X
1BATTERYTECHNOLOGIESINMINIGRIDSACROSSTHEWORLD 1
1.1TheGlobalStockofMiniGrids 2
1.2TheGenerationMixofMiniGrids 3
1.3TheRoleofStorage 3
1.4TheRoleoftheLevelizedCostofStorageintheTechnology
SelectionProcess 5
1.5UsingMiniGridsforProductiveUses:BeyondBasicAccesstoElectricity 5
1.6ChallengesFacedbyMiniGridDevelopers 5
2SIZEOFTHEGLOBALMARKETFORMINIGRIDANDENERGYSTORAGE 7
2.1NumberofPeoplewithoutAccesstoElectricity 7
2.2ProjectedAccessby2030 8
2.3RuralMiniGridInstallationsin2021 8
2.4ForecastingGlobalDemandforMiniGridsandBatteryStorageSystems 9
3SELECTIONOFBATTERYTECHNOLOGY 12
3.1FactorsInvestorsConsider 12
3.2ComparisonofStorageTechnologies 14
3.3TheCapitalCostofBatteries 15
3.4TheLevelizedCostofStorage 16
4FUTURETRENDSINBATTERYSTORAGEFORMINIGRIDAPPLICATION 20
4.1UsedLithium-IonBatteriesasaStationaryStorageSolution 20
4.2Iron-AirBatteriesforLong-TermEnergyStorage 21
4.3SodiumIonBatteries 22
4.4Hydrogen-PoweredStorage 22
4.5FlywheelEnergyStorageforMiniGridStabilization 22
5CASESTUDIES 24
5.1SolarMiniGridswithLeadAcidBatteries:TheHuskPowerMicrogrids
InitiativeinIndiaandNigeria 24
5.2SolarHybridMiniGridwithLithiumIronPhosphateBatteries:TheLolwe
Islands,Uganda 25
ivENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT
5.3SolarHybridMiniGridwithLithium-IonNickelManganeseCobaltBatteries:
SanSeth,Bogale,Myanmar 26
5.4SolarHybridMiniGridwithLithiumIronPhosphateBatteries:Dancitagi,
Nigeria 26
5.5SolarMiniGridwithLithiumIronPhosphateBatteries:Makhala,
Amperehour,India 27
5.6SolarMiniGridwithVanadiumRedoxFlowBattery:Maldives 28
5.7SolarMiniGridwithFlywheelEnergyStorageSystems:ThePhilippines 28
6RECOMMENDATIONS 31
REFERENCES 33
APPENDIXA:TYPESOFENERGYSTORAGE 35
APPENDIXB:IMPROVINGTHEPERFORMANCEOFLEADACIDBATTERY
STORAGEMINIGRIDS 38
LISTOFFIGURESANDTABLES
LISTOFFIGURESANDTABLES
FIGURES
1.1NumberofInstalledandPlannedMiniGrids,byRegion,2021 2
1.2NumberofInstalledandPlannedMiniGridsinSelectedCountries,2022 2
1.3GenerationMixofInstalledandPlannedMiniGrids,2019 3
1.4BatteryStorageTransitioninRuralMiniGridsinAsiaandAfrica,2012–21 3
1.5PrimarySourceofBatteryStoragebySelectedMiniGridDevelopersin2017–21 4
1.6MiniGridBatteryStorageasPercentageofTotalCapacity,byTechnology
Type,2012–21 4
1.7SharesofLeadAcidandLithium-IonasSourcesofBatteryStorageby
MiniGridsinSouthandSoutheastAsiaandAfrica,2022 4
1.8EffectofGridLoadFactoronLevelizedCostofElectricity 5
2.1NumberofPeopleWithoutAccesstoElectricity,byRegion,2021and2030 8
2.2ProjectedAnnualIncreaseinNumberofRuralPeoplewithAccessto
Electricity,byRegion,2021–30 8
2.3DistributionofMiniGridCapacity,byRegion,2021 9
2.4ProjectedAnnualGlobalDemandforRuralMiniGridintheLow-,Base-,
andHigh-CaseScenarios,2021–30 10
2.5ProjectedGlobalCumulativeCapacityAdditionofNewRuralMiniGrids,
2022–30 10
2.6ProjectedGlobalDemandforBatteriesforRuralMiniGrids,2021–30 11
3.1EstimatedandProjectedDemandforBatteriesforMiniGrids,byType,
2021–30 13
3.2CostofSix-HourStorage,byBatteryType,2022–30 15
3.3LevelizedCostofStorageofSelectedBatteryTypesatDifferentDurations 18
3.4ContributionsofCapitalExpense,OperationsandMaintenance,Residual
Value,andElectricityCosttotheLevelizedCostofStorage,byBatteryType 18
3.5EstimatedandProjectedLevelizedCostofStorageforSix-HourDuration
System,byBatteryType 19
4.1ProjectedChangesinBatteryPerformanceBetween2018and2025,
byTypeofBattery 21
5.1HuskMiniGridintheVillageofAkura,inNasawaraState,Nigeria 25
5.2HybridSolarMiniGridintheLolweIslands,Uganda 25
v
viENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT
5.3IceManufacturingUnitPoweredbyEngie-Equatorial’sSolarMiniGridinthe
LolweIslands,Uganda 26
5.4HybridSolarMiniGridinSanSeth,Bogale,Myanmar 27
5.5SolarHybridMiniGridwithContainerizedEnergyStorageSolutionsInstalled
byPowerGeninDancitagi,Nigeria 27
5.6SolarMiniGridwithContainerizedBatteryEnergyStorageSystemin
Makhala,India 28
5.7VanadiumRedoxFlowBatteryEnergyStorageSystemattheMalahiniKuda
BandosResort,Maldives 29
5.8KineticEnergyStorageSystemsinthePalawanislands,thePhilippines 30
TABLES
2.1EstimatedandProjectedMiniGridCapacityperHousehold,byRegion,
2021and2030 9
2.2BatteryCapacityinSelectedMiniGridProjectsInstalledin2020–21 11
2.3RatioofBatteryCapacitytoMiniGridInstalledCapacity 11
3.1TechnicalParametersofSelectedBatteryTechnologies 14
3.2PughMatrixRankingofStorageTechnologiesinMiniGridApplications 15
3.3DescriptionsandAssumedValuesinLevelizedCostofBatteryStorage
Calculations 17
ABBREVIATIONS
CAPEX
capitalexpenditure
CSR
CorporateSocialResponsibility
DER
distributedenergyresource
EE
Engie-Equatorial
ESP
EnergyStoragePartnership
ESS
energystoragesystem(s)
FESS
flywheelenergystoragesystem(s)
GWh
gigawatthour(s)
kg
kilogram
kVA
kilovoltampere
kW
kilowatt
kWh
kilowatthour(s)
kWp
kilowattpeak
LCOE
levelizedcostofelectricity
LCOS
levelizedcostofstorage
LFP
lithiumferro-phosphate
MWh
megawatt(s)
NMC
nickelmanganesecobalt
O&M
operationsandmaintenance
PALECO
PalawanElectricCooperative
PV
photovoltaic
SIPCOR
S.I.PowerCorporation
VRFB
vanadiumredoxflowbattery
W
watt
Wh
watthour
Wp
wattpeak
AllcurrencyisinUnitedStatesdollars(US$,USD),unlessotherwiseindicated.
vii
ACKNOWLEDGMENTS
T
hisreportwaspreparedbytheWorldBank’sEnergySectorManagementAssistanceProgram(ESMAP)andCustomizedEnergySolutions,andundertheauspicesoftheWorkingGroupFiveoftheEnergyStoragePartnershipwithtechnicalcontributionsandreviewsbyJonExel(SeniorEnergySpecialist,WB),ChrisGreacen(Consultant,WB),andAlfredoVillavicencio(Consultant,WB).
GabrielaElizondoAzuela(PracticeManager),ChandraGovindarajalu(LeadEnergySpecialist),JulietPumpuni(SeniorEnergySpecialist,WB),andClemenciaTorresdeM?stle(SeniorEnergy
Specialist,WB)providedinvaluablecontributionsandoverallguidance.
SpecialthankstoHuskPowerSystems,EngieEnergyAccess,PowerGen,Amperehour,andAmberKineticsforprovidinginformationforthecasestudies;andtothefollowingEnergyStoragePartnershippartners–JensJaeger(ARE),LucianoMartini(RSE),EdBrown(Loughborough
University),andEdwinMalagon(IADB)whoparticipatedinthepeerreviewprocess.
KEYFINDINGS
hisreportspecificallyfocusesonbatteryenergystorageindecentralizedoff-grid
T
minigridslocatedinremoteareas.Itprovidesanoverviewofbatterytechnologiesused
inminigridsglobally,demandforecastsforvariousbatterytechnologies,acomparison
ofcharacteristicsofdifferentbatteries,anexplorationofcostsandtrendsinbattery
technologies,casestudies,andrecommendations.
Inthehigh-casescenario,itisprojectedthatannualdemandforminigridbatteriesis
projectedtoincreasetoover3,600MWhby2030fromaround180MWhin2020.Inabase-case
scenario,annualdemandexceeds2,200MWh,whileinthelowcaseannualdemandisaround
1,500MWh.
Theselectionofbatterytechnologyformini-gridprojectsisamulti-faceteddecisionbased
onfactorssuchascyclelife,depthofdischarge,typeofloadconnectedtothegrid,energydensity,
C-rating,thermalrunaway,maintenance,after-salesservice,hardwarecompatibility,maturity,cost,
batterydegradation,operatingconditions,andenvironmentalconcerns.
Thelevelizedcostofstorage(LCOS)iscriticalforoptimaldecision-makinginminigrid
development.Thoughupfrontcostsoftendominatethetechnologyselectionprocess,theLCOS
providesamorecomprehensiveperspectivebyconsideringthelifetimecostofstoragetechnologies.
TheLCOScalculationincorporatesthecapitalexpenditure,operationsandmaintenancecosts,
residualvalue,andcostofchargingthebattery.Whileleadacidbatteriescostlesspernameplate
capacity($/kWh),thesuperiorcyclelife,efficiency,andpermissibleroutinedepthofdischargeof
lithium-ionbatteriesresultinalowerLCOS.
Lithium-ionbatterieshavegrowninpopularityandaredisplacingleadacidbatteries,
thankstoreducedprices,longerlifespan,andminimalmaintenancerequirements.Historically,lead
acidbatterieswerethego-tochoiceduetotheirmaturity,availability,andlowupfrontcost.
Lithium-ionpricesareforecastedtodeclineuntil2030.Incontrast,leadacid,amature
technology,maynotwitnesssignificantpricedrops.Forecastssuggestthatlithium-ionbatteries
willextendtheirleadasthelowest-costbatterytechnologyforminigridsdroppingfrom2022LCOS
of$0.37perkWhto$0.34in2026and$0.32by2030,notwithstandingthelikelihoodthatrawmaterial
costsforlithium-ionbatteriesriseduetodemandfromtheelectricvehicleindustry.Thecostoflead
acidbatterieswilldeclineonlyslightly,from$0.55to$0.54perkWhoverthistimeperiod.
Inthenearfuture,otherbatterystorageoptionsarepromising,including“second-life”
lithium-ionbatteries,sodium-ionbatteries,iron-airbatteries,hydrogen,andflywheelenergystorage
ThisreportincludescasestudiesofminigridsfromAfricaandAsiathathighlightglobal
deploymentofbatterytechnologiesrangingfromconventionalleadacidtolithium-ion,toVRBF
andflywheelstorage.Eachcasestudydescribestheminigrid’srating,energystoragerating,battery
chemistry,businessesserved,communitieselectrified,andthewayinwhichtheelectricityisused.
Minigridenergystoragerecommendationsinclude:studyingbatteryperformanceinactual
operatingconditions,consideringtotalcostandnotjustupfrontbatterycost,adoptingsafetyand
performancestandards,promotingrecyclingpractices,encouragingtheuseofrepurposedbattery
technologies,exemptingminigridbatteriesfromimportduties,providingtechnicalskillstraining,
andcreatingstandardoperatingprocedurestounderstandbatterytechnologyperformance.
ix
EXECUTIVESUMMARY
heEnergyStoragePartnership(ESP),establishedbytheWorldBankin2019,aimsto
T
developandimplementenergystoragesolutionsfordevelopingcountries.Thesesolutions,coupledwithrenewableenergysources,couldprovideelectricitytoover1billionpeoplewhocurrentlylackreliableaccess.Aminigridisaninterconnectedsystemofdistributed
energyresources(DERs)–generallyincludingrenewableenergyandelectricitystorage—that
operatesindependently,servicingcustomergroupsofvarioussizes,fromremoteareastourban
locations.Theseminigridssupportarangeoffacilitiesincludingprimaryhealthcenters,agriculturalactivities,learningcenters,hospitals,airports,andcommercialestablishments.
Thisreportspecificallyfocusesonbatteryenergystorageindecentralizedoff-gridminigrids
locatedinremoteareas.Itprovidesanoverviewofbatterytechnologiesusedinminigridsglobally,demandforecastsforvariousbatterytechnologies,acomparisonofcharacteristicsofdifferentbatteries,anexplorationofcostsandtrendsinbatterytechnologies,casestudies,andrecommen-dations.Italsoincludesappendicesthatofferabroadoverviewofmechanical,electrochemical,
andthermalstorage,aswellasperformanceoptimizationofleadacidbatteriesinminigrids.
Globalelectricityneeds,particularlyinremoteandruralareas,areasignificantchallenge.
Asof2020,anestimated740millionpeoplestilllackaccesstoelectricity,577millionofwhomliveinSub-SaharanAfrica(SSA).ThoughSSAhasanelectrificationrateof48%asof2020,ambitiousnationalelectrificationplansincountriessuchasEthiopia,Ghana,Kenya,Nigeria,Rwanda,and
Senegalaimtoattainuniversalaccessby2030.Someofthese2030targetshavebeenimpactedbytheCOVID-19pandemic,withmanydevelopingcountrieslikelytoexperiencedelays.Undertheexistingtrajectory,itisexpectedthatabout800millionpeoplewillgainaccesstoelectricitybetween2021and2030,leaving560millionunelectrified.Toachievefullelectrificationby2030,itisnecessarytoprovideelectricitytoaround1.3billionpeople.
Growingdeploymentofminigridsarereachingsomeofthisunelectrifiedpopulation,with
21,000minigridscurrentlyservingabout48millionpeopleworldwide.Toservehalfabillionpeopleby2030,theworldneedsafleetof217,000minigrids,mostofwhichwillbepredominatelypoweredbysolarelectricitywithbatterybackup.
SouthAsiapresentlyleadswiththehighestnumberofinstalled(9,600)andplanned(19,000)minigrids.Afghanistan,India,andMyanmarcompriseabout80%ofminigridsinthisregion.Africaisestimatedtohaveabout3,100installedminigridswithabout9,000inthepipeline.InAfrica,
Nigeria,Tanzania,Senegal,andEthiopiaareamonganumberofcountriesthathaveembarkedonambitiousprojectstoboosttheirnationalelectrificationratesusingminigrids.Initiativessuchas
theNigerianElectrificationProjectandtheRuralElectrificationAgencyofSenegalintendtoprovidepoweraccesstooveramillionhouseholdsandenterprisesusingminigrids.
Theparadigmisshiftingfromtraditionaldieselandhydro-basedgridstothird-generationminigridspoweredbysolarandhybridenergysystemsandemployingadvancedtechnologieslike
prepaidmetersandonlinemonitoring.Thedecliningcostofsolarpanels,coupledwiththeabundantavailabilityofsunshineindevelopingcountries,ismakingsolar-poweredminigridsaneconomicallyfeasibleandenvironmentallyconsciouschoice.
In2021,approximately1,100ruralminigridprojectswereinstalledglobally,providing80MWofcapacity.SouthAsialedinannualinstallations,followedbySub-SaharanAfricaandSoutheastAsia.Projectionsforglobaldemandforminigridsbetween2022and2030,alongsidetheneedforbatterystoragesystemstosupporttheseminigrids,havebeenformulatedunderthreescenarios—highcase,basecase,andlowcase.
Inthehigh-casescenario,itisprojectedthatannualdemandforminigridbatteriesisprojectedtoincreasetoover3,600MWhby2030fromaround180MWhin2020.Inabase-casescenario,
Capacity(MWh)
ExECUTIvESUMMARYxi
annualdemandexceeds2,200MWh,whileinthelowcaseannualdemandisaround1,500MWh.Lithium-ionbatteries,inparticular,haveseenincreasedusageinminigrids,especiallyinSub-SaharanAfrica.By2030,lithium-ionbatterypenetrationisprojectedtoriseto70percentfrom55percentin2021(FigureES.1).
Expandingtheroleofminigridsforproductiveuses,beyondbasicelectricityaccess,allowsforincreasedgridutilizationwithoutacorrespondingriseinpeakload.Theoutcomeislowerlevelizedcostsofelectricity(LCOE)andexpeditedreturnoninvestmentfordevelopers.CasestudiesfromBangladeshandIndiavalidatetheeffectivenessofthisapproach.
Despitetheirimmensepotential,minigridsfacevariouschallenges,includingremoteprojectlocations,difficultiesinmonitoringandmaintenance,sustainabilityconcerns,taxationissues,riskofstrandedassets,lackoffinancing,andanabsenceofstandardization.Operationalchallengesrelatedtotemperaturealsopresentdifficulties,particularlyforstoragetechnologies.Overcomingthesebarrierswillbevitaltoleveragethefullpotentialofminigridsinmeetingtheworld’senergyaccessgoals.
Storagetechnologiesarecentraltotheefficiencyandreliabilityofminigrids.Theselectionofbatterytechnologyformini-gridprojectsisamulti-faceteddecisionthatinvestorsbaseonfactorssuchascyclelife,depthofdischarge,typeofloadconnectedtothegrid,energydensity,C-rating,thermalrunaway,maintenance,after-salesservice,hardware
compatibility,maturity,cost,batterydegradation,operatingconditions,andenvironmentalconcerns(TableES.1).
Historically,leadacidbatterieswerethego-tochoiceduetotheirmaturity,availability,andlowupfrontcost.
Basedonadatabaseof170minigridsusing30MWhofcombinedstorage,lithium-ionbatterieshavegrownin
popularityandaredisplacingleadacidbatteries,thankstoreducedprices,longerlifespan,andminimalmaintenancerequirements.AqualitativePughmatrixassessmentwithresponsesfromminigriddevelopersrevealslithium-ionasthemostsuitabletechnology,despiteredoxflowbatteriesscoringhighonbatterylifeandenvironmentalfriendliness.
VanadiumRedoxFlowBatteries(VRFBs)alsoshowpromiseduetotheirlongoperationallife,highdepthof
discharge,robustperformanceacrossarangeoftemperatures,andpotentialforcostreductionthroughinnovativebusinessmodelssuchasvanadiumleasing.
Whenconsideringthecapitalcostofbatteries,leadacid,amaturetechnology,maynotwitnesssignificantpricedrops.Incontrast,lithium-ionpricesareforecastedtodeclineuntil2030,notwithstandingthelikelihoodthatraw
materialcostsforlithium-ionbatteriesriseduetodemandfromtheelectricvehicleindustry.
Consideringthelevelizedcostofstorage(LCOS)iscriticalforoptimaldecision-makinginminigriddevelopment.Thoughupfrontcostsoftendominatethetechnologyselectionprocess,theLCOSprovidesamorecomprehensiveperspectiveby
consideringthelifetimecostofstoragetechnologies.TheLCOScalculationincorporatesthecapitalexpenditure,operationsandmaintenancecosts,residualvalue,andcostofchargingthebattery.Whileleadacidbatteriescostlesspernameplatecapacity($/kWh),thesuperiorcyclelife,efficiency,andpermissibleroutinedepthofdischargeoflithium-ionbatteriesresultinalowerLCOS.ForVRFBs,theCAPEXperkWhsignificantlydropsasstoragedurationincreases.
Forecastssuggestthatlithium-ionbatterieswillextendtheirleadasthelowest-costbatterytechnologyfor
minigridsdroppingfrom2022LCOSof$0.37perkWhto$0.34in2026and$0.32by2030,whilethecostofleadacidbatterieswilldeclineonlyslightly,from$0.55to$0.54perkWhoverthistimeperiod.VRFBsareexpectedtobecomeincreasinglycompetitivewithleadacidbatteries(FigureES.2).
FIGUREES.1:ProjectedGlobalDemandforBatteriesforRuralMiniGrids,2021–30
4,000
3,500
3,000
2,500
2,000
1,500
1,000
500
0
Source:CES.
2021202220232024202520262027202820292030
LowCaseBaseCaseHighCase
LCOS($/kWh)
xiiENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT
TABLEES.1:TechnicalParametersofSelectedBatteryTechnologies
Parameter
BatteryType
LeadAcid
AdvancedLeadAcid
Lithium-Ion
NiNaCl2
Vanadium
RedoxBatteries
(VRB)
Zn–Br(flowtech)
Batterychemistry
Lead
Lead,carbonelectrodes
NMC/LFP
Nickel,sodiumchloride
Vanadium
Zinc,bromine
Round-tripefficiency(percent)
60–80
80–90
85–95
70–90
60–70
68–70
C-rate
C/10
C/5
C/4-2C
C/6-C/8
C/5-C/8
C/3–C/4
Depthofdischarge(percent)
50–60
70–80
90
80
100
100
Energydensity(Wh/kg)
40–60
27–30
80–150
65–70
7–8
15–25
Cyclelife
500–1,000
1,200–1,800
2,000–6,000
4,500–5,000
7,000–10,000
3,000–3,500
Safety
High
High
Medium
Medium
High
Medium
CAPEX($/kWh)
80–150
120–300
250–350
750–1,000
600–1000
750–800
Toxicityofchemicals
High
High
High
Medium
Medium
High
Operatingtemperature(°C)
–20–50
–20–50
0–55
270–350
15–55
20–50
Self-discharge(percent/month)
10–15
3–5
0.5–2
5
5
60
Source:CES.
FIGUREES.2:EstimatedandProjectedLevelizedCostofStorageforSix-HourDurationSystem,byBatteryType
0.6
0.5
0.4
0.3
0.2
0.1
0.0
2022
2026
2030
LeadAcid
0.55
0.54
0.54
Adv.LeadAcid
0.52
0.50
0.49
Li-ionLFP
0.37
0.34
0.32
VanadiumRedox
0.43
0.41
0.40
NiNaCl2
0.55
0.51
0.48
Source:CES.
ExECUTIvESUMMARYxiii
Inthenearfuture,otherbatterystorageoptionsarepromising.“Second-life”lithium-ionbatteriespresentsapotentialstationarystoragesolutionaftertheyhavebeencycledoutofuseinautomotiveapplicationsandthoroughlytested.
Sodium-ionbatterieshaveemergedasapotentialsolutionforenergystorageinsolarmini-grids,withadvantagesoverlithium-ionbatteriesintermsofrawmaterialabundance,reasonablecyclelife,comparableenergystoragecapacity,adaptablemanufacturingprocesses,andimprovedsafetyandstability.Iron-airbatteriesmightofferaviablepathforlow-costlong-termenergystorage,despitetheirlowerenergydensity.Hydrogen-poweredstoragesolutions,capable
ofstoringenergyforlongerperiodsthanbatteries,arebeingproposedasalternativestotraditionaldieselgenerators
andcouldpotentiallypowerminigridsinremoteareas.Flywheelenergystorage,whichstoreskineticenergyinarotatingmass,offerssignificantadvantages,suchasalonglifetime,increasedcharge-cyclecapabilities,andrapidoutput,while
lackinghaza
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025陜西省建筑安全員《A證》考試題庫
- 2025青海建筑安全員A證考試題庫附答案
- 團隊管理經(jīng)驗分享培訓(xùn)課件
- 世界觀與方法論的關(guān)系
- JJF(桂)-稱重容罐校準(zhǔn)規(guī)范試驗報告
- 三角形王國 小班數(shù)學(xué)
- 《惡性青光眼》課件
- 解題方法突破 分類討論課件-名師微課堂
- 《基因變異疾病》課件
- 江蘇省蘇州市姑蘇區(qū)2024-2025學(xué)年八年級上學(xué)期期末質(zhì)量監(jiān)測歷史卷(含答案)
- 閘門及啟閉機安裝專項施工方案
- 應(yīng)征公民體格檢查表(征兵)
- 鋼筋位置及保護層厚度檢測ppt課件
- 巖石堅固性和穩(wěn)定性分級表
- 張可填充顏色的中國地圖與世界地圖課件
- CNC程序控制管理辦法
- 案例思念休閑吧
- 北京石油機械廠螺桿鉆具使用說明書-最新
- (完整版)虛擬語氣練習(xí)題(含答案)
- 六年級語文(部編)上冊詞語表拼音
- 模板2-課堂學(xué)習(xí)任務(wù)單
評論
0/150
提交評論