微電網(wǎng)儲能:電池部署現(xiàn)狀與預(yù)測(英)_第1頁
微電網(wǎng)儲能:電池部署現(xiàn)狀與預(yù)測(英)_第2頁
微電網(wǎng)儲能:電池部署現(xiàn)狀與預(yù)測(英)_第3頁
微電網(wǎng)儲能:電池部署現(xiàn)狀與預(yù)測(英)_第4頁
微電網(wǎng)儲能:電池部署現(xiàn)狀與預(yù)測(英)_第5頁
已閱讀5頁,還剩102頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

EnergyStorageforMiniGrids

StatusandProjectionsofBatteryDeployment

AnEnergyStoragePartnershipReport

EnergyStorageforMiniGrids

StatusandProjectionsofBatteryDeployment

ThisreportoftheEnergyStoragePartnershipispreparedbytheEnergy SectorManagementAssistanceProgram(ESMAP)withcontributionsfromtheAllianceforRuralElectrification(ARE),RicereasulSistemaEnergetico(RSE), LoughboroughUniversity,andtheInter-AmericanDevelopmentBank(IADB). TheEnergyStoragePartnershipisaglobalpartnershipconvenedbythe WorldBankGroupthroughESMAPEnergyStorageProgramtofosterinternationalcooperationtodevelopsustainableenergystorage

solutionsfordevelopingcountries.Formoreinformationvisit:

/the_energy_storage_partnership_esp

ii

ENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT

ABOUTESMAP

TheEnergySectorManagementAssistanceProgram(ESMAP)isapartnershipbetweentheWorldBankand

24partners

tohelplow-andmiddle-incomecountriesreducepovertyandboostgrowththroughsustainable

energysolutions.ESMAP’sanalyticalandadvisoryservicesarefullyintegratedwithintheWorldBank’scountryfinancingandpolicydialogueintheenergysector.ThroughtheWorldBankGroup(WBG),ESMAPworksto

acceleratetheenergytransitionrequiredtoachieve

SustainableDevelopmentGoal7

(SDG7)toensureaccesstoaffordable,reliable,sustainable,andmodernenergyforall.IthelpstoshapeWBGstrategiesandprogramstoachievethe

WBGClimateChangeActionPlan

targets.Learnmoreat:

?2023InternationalBankforReconstructionandDevelopment/TheWorldBank

1818HStreetNW,Washington,DC20433

Telephone:202-473-1000;Internet:

RightsandPermissions

Thematerialinthisworkissubjecttocopyright.BecausetheWorldBankencouragesdisseminationofits

knowledge,thisworkmaybereproduced,inwholeorinpart,fornoncommercialpurposesiffullattributionto

thisworkisgiven.Anyqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedtoWorldBankPublications,WorldBankGroup,1818HStreetNW,Washington,DC20433,USA;fax:+1-202-522-2625;e-mail:

pubrights@

.

Furthermore,theESMAPProgramManagerwouldappreciatereceivingacopyofthepublicationthatusesthispublicationforitssourcesentincareoftheaddressabove,orto

esmap@

.ThisworkisavailableundertheCreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)

/licenses/

by/3.0/igo

.UndertheCreativeCommonsAttributionlicense,youarefreetocopy,distribute,transmit,andadaptthiswork,includingforcommercialpurposes,underthefollowingconditions:

Attribution—EnergySectorManagementAssistanceProgram(ESMAP).2023.EnergyStorageforMiniGrids:StatusandProjectionsofBatteryDeployment.Washington,DC:WorldBank.

Translations—ThistranslationwasnotcreatedbyTheWorldBankandshouldnotbeconsideredanofficialWorldBanktranslation.TheWorldBankshallnotbeliableforanycontentorerrorinthistranslation.

Adaptations—ThisisanadaptationofanoriginalworkbyTheWorldBank.Viewsandopinionsexpressedintheadaptationarethesoleresponsibilityoftheauthor(s)oftheadaptationandarenotendorsedbyTheWorldBank.

Third-PartyContent—TheWorldBankdoesnotnecessarilyowneachcomponentofthecontentcontained

withintheworkanddoesnotwarrantthattheuseofanythird-partyownedindividualcomponentorpart

containedintheworkwillnotinfringeontherightsofthosethirdparties.Ifyouwishtoreuseacomponentofthework,itisyourresponsibilitytodeterminewhetherpermissionisneededforthatreuseandtoobtainpermissionfromthecopyrightowner.Examplesofcomponentscaninclude,butarenotlimitedto,tables,figures,or

images.

ProductionCredits

ProductionEditor|HeatherAustin

Designer|CircleGraphics,Inc.

FrontCover|?IRENA

BackCover|?IRENA

Allimagesremainthesolepropertyoftheirsourceandmaynotbeusedforanypurposewithoutwrittenpermissionfromthesource.

TABLEOFCONTENTS

ABBREVIATIONS VII

ACKNOWLEDGMENTS VIII

KEYFINDINGS IX

EXECUTIVESUMMARY X

1BATTERYTECHNOLOGIESINMINIGRIDSACROSSTHEWORLD 1

1.1TheGlobalStockofMiniGrids 2

1.2TheGenerationMixofMiniGrids 3

1.3TheRoleofStorage 3

1.4TheRoleoftheLevelizedCostofStorageintheTechnology

SelectionProcess 5

1.5UsingMiniGridsforProductiveUses:BeyondBasicAccesstoElectricity 5

1.6ChallengesFacedbyMiniGridDevelopers 5

2SIZEOFTHEGLOBALMARKETFORMINIGRIDANDENERGYSTORAGE 7

2.1NumberofPeoplewithoutAccesstoElectricity 7

2.2ProjectedAccessby2030 8

2.3RuralMiniGridInstallationsin2021 8

2.4ForecastingGlobalDemandforMiniGridsandBatteryStorageSystems 9

3SELECTIONOFBATTERYTECHNOLOGY 12

3.1FactorsInvestorsConsider 12

3.2ComparisonofStorageTechnologies 14

3.3TheCapitalCostofBatteries 15

3.4TheLevelizedCostofStorage 16

4FUTURETRENDSINBATTERYSTORAGEFORMINIGRIDAPPLICATION 20

4.1UsedLithium-IonBatteriesasaStationaryStorageSolution 20

4.2Iron-AirBatteriesforLong-TermEnergyStorage 21

4.3SodiumIonBatteries 22

4.4Hydrogen-PoweredStorage 22

4.5FlywheelEnergyStorageforMiniGridStabilization 22

5CASESTUDIES 24

5.1SolarMiniGridswithLeadAcidBatteries:TheHuskPowerMicrogrids

InitiativeinIndiaandNigeria 24

5.2SolarHybridMiniGridwithLithiumIronPhosphateBatteries:TheLolwe

Islands,Uganda 25

ivENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT

5.3SolarHybridMiniGridwithLithium-IonNickelManganeseCobaltBatteries:

SanSeth,Bogale,Myanmar 26

5.4SolarHybridMiniGridwithLithiumIronPhosphateBatteries:Dancitagi,

Nigeria 26

5.5SolarMiniGridwithLithiumIronPhosphateBatteries:Makhala,

Amperehour,India 27

5.6SolarMiniGridwithVanadiumRedoxFlowBattery:Maldives 28

5.7SolarMiniGridwithFlywheelEnergyStorageSystems:ThePhilippines 28

6RECOMMENDATIONS 31

REFERENCES 33

APPENDIXA:TYPESOFENERGYSTORAGE 35

APPENDIXB:IMPROVINGTHEPERFORMANCEOFLEADACIDBATTERY

STORAGEMINIGRIDS 38

LISTOFFIGURESANDTABLES

LISTOFFIGURESANDTABLES

FIGURES

1.1NumberofInstalledandPlannedMiniGrids,byRegion,2021 2

1.2NumberofInstalledandPlannedMiniGridsinSelectedCountries,2022 2

1.3GenerationMixofInstalledandPlannedMiniGrids,2019 3

1.4BatteryStorageTransitioninRuralMiniGridsinAsiaandAfrica,2012–21 3

1.5PrimarySourceofBatteryStoragebySelectedMiniGridDevelopersin2017–21 4

1.6MiniGridBatteryStorageasPercentageofTotalCapacity,byTechnology

Type,2012–21 4

1.7SharesofLeadAcidandLithium-IonasSourcesofBatteryStorageby

MiniGridsinSouthandSoutheastAsiaandAfrica,2022 4

1.8EffectofGridLoadFactoronLevelizedCostofElectricity 5

2.1NumberofPeopleWithoutAccesstoElectricity,byRegion,2021and2030 8

2.2ProjectedAnnualIncreaseinNumberofRuralPeoplewithAccessto

Electricity,byRegion,2021–30 8

2.3DistributionofMiniGridCapacity,byRegion,2021 9

2.4ProjectedAnnualGlobalDemandforRuralMiniGridintheLow-,Base-,

andHigh-CaseScenarios,2021–30 10

2.5ProjectedGlobalCumulativeCapacityAdditionofNewRuralMiniGrids,

2022–30 10

2.6ProjectedGlobalDemandforBatteriesforRuralMiniGrids,2021–30 11

3.1EstimatedandProjectedDemandforBatteriesforMiniGrids,byType,

2021–30 13

3.2CostofSix-HourStorage,byBatteryType,2022–30 15

3.3LevelizedCostofStorageofSelectedBatteryTypesatDifferentDurations 18

3.4ContributionsofCapitalExpense,OperationsandMaintenance,Residual

Value,andElectricityCosttotheLevelizedCostofStorage,byBatteryType 18

3.5EstimatedandProjectedLevelizedCostofStorageforSix-HourDuration

System,byBatteryType 19

4.1ProjectedChangesinBatteryPerformanceBetween2018and2025,

byTypeofBattery 21

5.1HuskMiniGridintheVillageofAkura,inNasawaraState,Nigeria 25

5.2HybridSolarMiniGridintheLolweIslands,Uganda 25

v

viENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT

5.3IceManufacturingUnitPoweredbyEngie-Equatorial’sSolarMiniGridinthe

LolweIslands,Uganda 26

5.4HybridSolarMiniGridinSanSeth,Bogale,Myanmar 27

5.5SolarHybridMiniGridwithContainerizedEnergyStorageSolutionsInstalled

byPowerGeninDancitagi,Nigeria 27

5.6SolarMiniGridwithContainerizedBatteryEnergyStorageSystemin

Makhala,India 28

5.7VanadiumRedoxFlowBatteryEnergyStorageSystemattheMalahiniKuda

BandosResort,Maldives 29

5.8KineticEnergyStorageSystemsinthePalawanislands,thePhilippines 30

TABLES

2.1EstimatedandProjectedMiniGridCapacityperHousehold,byRegion,

2021and2030 9

2.2BatteryCapacityinSelectedMiniGridProjectsInstalledin2020–21 11

2.3RatioofBatteryCapacitytoMiniGridInstalledCapacity 11

3.1TechnicalParametersofSelectedBatteryTechnologies 14

3.2PughMatrixRankingofStorageTechnologiesinMiniGridApplications 15

3.3DescriptionsandAssumedValuesinLevelizedCostofBatteryStorage

Calculations 17

ABBREVIATIONS

CAPEX

capitalexpenditure

CSR

CorporateSocialResponsibility

DER

distributedenergyresource

EE

Engie-Equatorial

ESP

EnergyStoragePartnership

ESS

energystoragesystem(s)

FESS

flywheelenergystoragesystem(s)

GWh

gigawatthour(s)

kg

kilogram

kVA

kilovoltampere

kW

kilowatt

kWh

kilowatthour(s)

kWp

kilowattpeak

LCOE

levelizedcostofelectricity

LCOS

levelizedcostofstorage

LFP

lithiumferro-phosphate

MWh

megawatt(s)

NMC

nickelmanganesecobalt

O&M

operationsandmaintenance

PALECO

PalawanElectricCooperative

PV

photovoltaic

SIPCOR

S.I.PowerCorporation

VRFB

vanadiumredoxflowbattery

W

watt

Wh

watthour

Wp

wattpeak

AllcurrencyisinUnitedStatesdollars(US$,USD),unlessotherwiseindicated.

vii

ACKNOWLEDGMENTS

T

hisreportwaspreparedbytheWorldBank’sEnergySectorManagementAssistanceProgram(ESMAP)andCustomizedEnergySolutions,andundertheauspicesoftheWorkingGroupFiveoftheEnergyStoragePartnershipwithtechnicalcontributionsandreviewsbyJonExel(SeniorEnergySpecialist,WB),ChrisGreacen(Consultant,WB),andAlfredoVillavicencio(Consultant,WB).

GabrielaElizondoAzuela(PracticeManager),ChandraGovindarajalu(LeadEnergySpecialist),JulietPumpuni(SeniorEnergySpecialist,WB),andClemenciaTorresdeM?stle(SeniorEnergy

Specialist,WB)providedinvaluablecontributionsandoverallguidance.

SpecialthankstoHuskPowerSystems,EngieEnergyAccess,PowerGen,Amperehour,andAmberKineticsforprovidinginformationforthecasestudies;andtothefollowingEnergyStoragePartnershippartners–JensJaeger(ARE),LucianoMartini(RSE),EdBrown(Loughborough

University),andEdwinMalagon(IADB)whoparticipatedinthepeerreviewprocess.

KEYFINDINGS

hisreportspecificallyfocusesonbatteryenergystorageindecentralizedoff-grid

T

minigridslocatedinremoteareas.Itprovidesanoverviewofbatterytechnologiesused

inminigridsglobally,demandforecastsforvariousbatterytechnologies,acomparison

ofcharacteristicsofdifferentbatteries,anexplorationofcostsandtrendsinbattery

technologies,casestudies,andrecommendations.

Inthehigh-casescenario,itisprojectedthatannualdemandforminigridbatteriesis

projectedtoincreasetoover3,600MWhby2030fromaround180MWhin2020.Inabase-case

scenario,annualdemandexceeds2,200MWh,whileinthelowcaseannualdemandisaround

1,500MWh.

Theselectionofbatterytechnologyformini-gridprojectsisamulti-faceteddecisionbased

onfactorssuchascyclelife,depthofdischarge,typeofloadconnectedtothegrid,energydensity,

C-rating,thermalrunaway,maintenance,after-salesservice,hardwarecompatibility,maturity,cost,

batterydegradation,operatingconditions,andenvironmentalconcerns.

Thelevelizedcostofstorage(LCOS)iscriticalforoptimaldecision-makinginminigrid

development.Thoughupfrontcostsoftendominatethetechnologyselectionprocess,theLCOS

providesamorecomprehensiveperspectivebyconsideringthelifetimecostofstoragetechnologies.

TheLCOScalculationincorporatesthecapitalexpenditure,operationsandmaintenancecosts,

residualvalue,andcostofchargingthebattery.Whileleadacidbatteriescostlesspernameplate

capacity($/kWh),thesuperiorcyclelife,efficiency,andpermissibleroutinedepthofdischargeof

lithium-ionbatteriesresultinalowerLCOS.

Lithium-ionbatterieshavegrowninpopularityandaredisplacingleadacidbatteries,

thankstoreducedprices,longerlifespan,andminimalmaintenancerequirements.Historically,lead

acidbatterieswerethego-tochoiceduetotheirmaturity,availability,andlowupfrontcost.

Lithium-ionpricesareforecastedtodeclineuntil2030.Incontrast,leadacid,amature

technology,maynotwitnesssignificantpricedrops.Forecastssuggestthatlithium-ionbatteries

willextendtheirleadasthelowest-costbatterytechnologyforminigridsdroppingfrom2022LCOS

of$0.37perkWhto$0.34in2026and$0.32by2030,notwithstandingthelikelihoodthatrawmaterial

costsforlithium-ionbatteriesriseduetodemandfromtheelectricvehicleindustry.Thecostoflead

acidbatterieswilldeclineonlyslightly,from$0.55to$0.54perkWhoverthistimeperiod.

Inthenearfuture,otherbatterystorageoptionsarepromising,including“second-life”

lithium-ionbatteries,sodium-ionbatteries,iron-airbatteries,hydrogen,andflywheelenergystorage

ThisreportincludescasestudiesofminigridsfromAfricaandAsiathathighlightglobal

deploymentofbatterytechnologiesrangingfromconventionalleadacidtolithium-ion,toVRBF

andflywheelstorage.Eachcasestudydescribestheminigrid’srating,energystoragerating,battery

chemistry,businessesserved,communitieselectrified,andthewayinwhichtheelectricityisused.

Minigridenergystoragerecommendationsinclude:studyingbatteryperformanceinactual

operatingconditions,consideringtotalcostandnotjustupfrontbatterycost,adoptingsafetyand

performancestandards,promotingrecyclingpractices,encouragingtheuseofrepurposedbattery

technologies,exemptingminigridbatteriesfromimportduties,providingtechnicalskillstraining,

andcreatingstandardoperatingprocedurestounderstandbatterytechnologyperformance.

ix

EXECUTIVESUMMARY

heEnergyStoragePartnership(ESP),establishedbytheWorldBankin2019,aimsto

T

developandimplementenergystoragesolutionsfordevelopingcountries.Thesesolutions,coupledwithrenewableenergysources,couldprovideelectricitytoover1billionpeoplewhocurrentlylackreliableaccess.Aminigridisaninterconnectedsystemofdistributed

energyresources(DERs)–generallyincludingrenewableenergyandelectricitystorage—that

operatesindependently,servicingcustomergroupsofvarioussizes,fromremoteareastourban

locations.Theseminigridssupportarangeoffacilitiesincludingprimaryhealthcenters,agriculturalactivities,learningcenters,hospitals,airports,andcommercialestablishments.

Thisreportspecificallyfocusesonbatteryenergystorageindecentralizedoff-gridminigrids

locatedinremoteareas.Itprovidesanoverviewofbatterytechnologiesusedinminigridsglobally,demandforecastsforvariousbatterytechnologies,acomparisonofcharacteristicsofdifferentbatteries,anexplorationofcostsandtrendsinbatterytechnologies,casestudies,andrecommen-dations.Italsoincludesappendicesthatofferabroadoverviewofmechanical,electrochemical,

andthermalstorage,aswellasperformanceoptimizationofleadacidbatteriesinminigrids.

Globalelectricityneeds,particularlyinremoteandruralareas,areasignificantchallenge.

Asof2020,anestimated740millionpeoplestilllackaccesstoelectricity,577millionofwhomliveinSub-SaharanAfrica(SSA).ThoughSSAhasanelectrificationrateof48%asof2020,ambitiousnationalelectrificationplansincountriessuchasEthiopia,Ghana,Kenya,Nigeria,Rwanda,and

Senegalaimtoattainuniversalaccessby2030.Someofthese2030targetshavebeenimpactedbytheCOVID-19pandemic,withmanydevelopingcountrieslikelytoexperiencedelays.Undertheexistingtrajectory,itisexpectedthatabout800millionpeoplewillgainaccesstoelectricitybetween2021and2030,leaving560millionunelectrified.Toachievefullelectrificationby2030,itisnecessarytoprovideelectricitytoaround1.3billionpeople.

Growingdeploymentofminigridsarereachingsomeofthisunelectrifiedpopulation,with

21,000minigridscurrentlyservingabout48millionpeopleworldwide.Toservehalfabillionpeopleby2030,theworldneedsafleetof217,000minigrids,mostofwhichwillbepredominatelypoweredbysolarelectricitywithbatterybackup.

SouthAsiapresentlyleadswiththehighestnumberofinstalled(9,600)andplanned(19,000)minigrids.Afghanistan,India,andMyanmarcompriseabout80%ofminigridsinthisregion.Africaisestimatedtohaveabout3,100installedminigridswithabout9,000inthepipeline.InAfrica,

Nigeria,Tanzania,Senegal,andEthiopiaareamonganumberofcountriesthathaveembarkedonambitiousprojectstoboosttheirnationalelectrificationratesusingminigrids.Initiativessuchas

theNigerianElectrificationProjectandtheRuralElectrificationAgencyofSenegalintendtoprovidepoweraccesstooveramillionhouseholdsandenterprisesusingminigrids.

Theparadigmisshiftingfromtraditionaldieselandhydro-basedgridstothird-generationminigridspoweredbysolarandhybridenergysystemsandemployingadvancedtechnologieslike

prepaidmetersandonlinemonitoring.Thedecliningcostofsolarpanels,coupledwiththeabundantavailabilityofsunshineindevelopingcountries,ismakingsolar-poweredminigridsaneconomicallyfeasibleandenvironmentallyconsciouschoice.

In2021,approximately1,100ruralminigridprojectswereinstalledglobally,providing80MWofcapacity.SouthAsialedinannualinstallations,followedbySub-SaharanAfricaandSoutheastAsia.Projectionsforglobaldemandforminigridsbetween2022and2030,alongsidetheneedforbatterystoragesystemstosupporttheseminigrids,havebeenformulatedunderthreescenarios—highcase,basecase,andlowcase.

Inthehigh-casescenario,itisprojectedthatannualdemandforminigridbatteriesisprojectedtoincreasetoover3,600MWhby2030fromaround180MWhin2020.Inabase-casescenario,

Capacity(MWh)

ExECUTIvESUMMARYxi

annualdemandexceeds2,200MWh,whileinthelowcaseannualdemandisaround1,500MWh.Lithium-ionbatteries,inparticular,haveseenincreasedusageinminigrids,especiallyinSub-SaharanAfrica.By2030,lithium-ionbatterypenetrationisprojectedtoriseto70percentfrom55percentin2021(FigureES.1).

Expandingtheroleofminigridsforproductiveuses,beyondbasicelectricityaccess,allowsforincreasedgridutilizationwithoutacorrespondingriseinpeakload.Theoutcomeislowerlevelizedcostsofelectricity(LCOE)andexpeditedreturnoninvestmentfordevelopers.CasestudiesfromBangladeshandIndiavalidatetheeffectivenessofthisapproach.

Despitetheirimmensepotential,minigridsfacevariouschallenges,includingremoteprojectlocations,difficultiesinmonitoringandmaintenance,sustainabilityconcerns,taxationissues,riskofstrandedassets,lackoffinancing,andanabsenceofstandardization.Operationalchallengesrelatedtotemperaturealsopresentdifficulties,particularlyforstoragetechnologies.Overcomingthesebarrierswillbevitaltoleveragethefullpotentialofminigridsinmeetingtheworld’senergyaccessgoals.

Storagetechnologiesarecentraltotheefficiencyandreliabilityofminigrids.Theselectionofbatterytechnologyformini-gridprojectsisamulti-faceteddecisionthatinvestorsbaseonfactorssuchascyclelife,depthofdischarge,typeofloadconnectedtothegrid,energydensity,C-rating,thermalrunaway,maintenance,after-salesservice,hardware

compatibility,maturity,cost,batterydegradation,operatingconditions,andenvironmentalconcerns(TableES.1).

Historically,leadacidbatterieswerethego-tochoiceduetotheirmaturity,availability,andlowupfrontcost.

Basedonadatabaseof170minigridsusing30MWhofcombinedstorage,lithium-ionbatterieshavegrownin

popularityandaredisplacingleadacidbatteries,thankstoreducedprices,longerlifespan,andminimalmaintenancerequirements.AqualitativePughmatrixassessmentwithresponsesfromminigriddevelopersrevealslithium-ionasthemostsuitabletechnology,despiteredoxflowbatteriesscoringhighonbatterylifeandenvironmentalfriendliness.

VanadiumRedoxFlowBatteries(VRFBs)alsoshowpromiseduetotheirlongoperationallife,highdepthof

discharge,robustperformanceacrossarangeoftemperatures,andpotentialforcostreductionthroughinnovativebusinessmodelssuchasvanadiumleasing.

Whenconsideringthecapitalcostofbatteries,leadacid,amaturetechnology,maynotwitnesssignificantpricedrops.Incontrast,lithium-ionpricesareforecastedtodeclineuntil2030,notwithstandingthelikelihoodthatraw

materialcostsforlithium-ionbatteriesriseduetodemandfromtheelectricvehicleindustry.

Consideringthelevelizedcostofstorage(LCOS)iscriticalforoptimaldecision-makinginminigriddevelopment.Thoughupfrontcostsoftendominatethetechnologyselectionprocess,theLCOSprovidesamorecomprehensiveperspectiveby

consideringthelifetimecostofstoragetechnologies.TheLCOScalculationincorporatesthecapitalexpenditure,operationsandmaintenancecosts,residualvalue,andcostofchargingthebattery.Whileleadacidbatteriescostlesspernameplatecapacity($/kWh),thesuperiorcyclelife,efficiency,andpermissibleroutinedepthofdischargeoflithium-ionbatteriesresultinalowerLCOS.ForVRFBs,theCAPEXperkWhsignificantlydropsasstoragedurationincreases.

Forecastssuggestthatlithium-ionbatterieswillextendtheirleadasthelowest-costbatterytechnologyfor

minigridsdroppingfrom2022LCOSof$0.37perkWhto$0.34in2026and$0.32by2030,whilethecostofleadacidbatterieswilldeclineonlyslightly,from$0.55to$0.54perkWhoverthistimeperiod.VRFBsareexpectedtobecomeincreasinglycompetitivewithleadacidbatteries(FigureES.2).

FIGUREES.1:ProjectedGlobalDemandforBatteriesforRuralMiniGrids,2021–30

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Source:CES.

2021202220232024202520262027202820292030

LowCaseBaseCaseHighCase

LCOS($/kWh)

xiiENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT

TABLEES.1:TechnicalParametersofSelectedBatteryTechnologies

Parameter

BatteryType

LeadAcid

AdvancedLeadAcid

Lithium-Ion

NiNaCl2

Vanadium

RedoxBatteries

(VRB)

Zn–Br(flowtech)

Batterychemistry

Lead

Lead,carbonelectrodes

NMC/LFP

Nickel,sodiumchloride

Vanadium

Zinc,bromine

Round-tripefficiency(percent)

60–80

80–90

85–95

70–90

60–70

68–70

C-rate

C/10

C/5

C/4-2C

C/6-C/8

C/5-C/8

C/3–C/4

Depthofdischarge(percent)

50–60

70–80

90

80

100

100

Energydensity(Wh/kg)

40–60

27–30

80–150

65–70

7–8

15–25

Cyclelife

500–1,000

1,200–1,800

2,000–6,000

4,500–5,000

7,000–10,000

3,000–3,500

Safety

High

High

Medium

Medium

High

Medium

CAPEX($/kWh)

80–150

120–300

250–350

750–1,000

600–1000

750–800

Toxicityofchemicals

High

High

High

Medium

Medium

High

Operatingtemperature(°C)

–20–50

–20–50

0–55

270–350

15–55

20–50

Self-discharge(percent/month)

10–15

3–5

0.5–2

5

5

60

Source:CES.

FIGUREES.2:EstimatedandProjectedLevelizedCostofStorageforSix-HourDurationSystem,byBatteryType

0.6

0.5

0.4

0.3

0.2

0.1

0.0

2022

2026

2030

LeadAcid

0.55

0.54

0.54

Adv.LeadAcid

0.52

0.50

0.49

Li-ionLFP

0.37

0.34

0.32

VanadiumRedox

0.43

0.41

0.40

NiNaCl2

0.55

0.51

0.48

Source:CES.

ExECUTIvESUMMARYxiii

Inthenearfuture,otherbatterystorageoptionsarepromising.“Second-life”lithium-ionbatteriespresentsapotentialstationarystoragesolutionaftertheyhavebeencycledoutofuseinautomotiveapplicationsandthoroughlytested.

Sodium-ionbatterieshaveemergedasapotentialsolutionforenergystorageinsolarmini-grids,withadvantagesoverlithium-ionbatteriesintermsofrawmaterialabundance,reasonablecyclelife,comparableenergystoragecapacity,adaptablemanufacturingprocesses,andimprovedsafetyandstability.Iron-airbatteriesmightofferaviablepathforlow-costlong-termenergystorage,despitetheirlowerenergydensity.Hydrogen-poweredstoragesolutions,capable

ofstoringenergyforlongerperiodsthanbatteries,arebeingproposedasalternativestotraditionaldieselgenerators

andcouldpotentiallypowerminigridsinremoteareas.Flywheelenergystorage,whichstoreskineticenergyinarotatingmass,offerssignificantadvantages,suchasalonglifetime,increasedcharge-cyclecapabilities,andrapidoutput,while

lackinghaza

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論