2024屆浙江省衢州市高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2024屆浙江省衢州市高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2024屆浙江省衢州市高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2024屆浙江省衢州市高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2024屆浙江省衢州市高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省衢州市高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.觀察下面頻率等高條形圖,其中兩個(gè)分類變量x,y之間關(guān)系最強(qiáng)的是()A. B.C. D.2.復(fù)數(shù)的虛部是()A.1 B.﹣i C.i D.﹣13.用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60°”時(shí),反設(shè)正確的是()A.假設(shè)三內(nèi)角都不大于60° B.假設(shè)三內(nèi)角都大于60°C.假設(shè)三內(nèi)角至多有一個(gè)大于60° D.假設(shè)三內(nèi)角至多有兩個(gè)大于60°4.已知集合,,則集合()A. B. C. D.5.下面是利用數(shù)學(xué)歸納法證明不等式(,且的部分過(guò)程:“……,假設(shè)當(dāng)時(shí),++…+,故當(dāng)時(shí),有,因?yàn)?,故++…+,……”,則橫線處應(yīng)該填()A.++…++<,B.++…+,C.2++…++,D.2++…+,6.為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩個(gè)同學(xué)各自獨(dú)立做了15次和20次試驗(yàn),并且利用線性回歸方法,求得回歸直線為l1和l2,已知在兩人的試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值恰好相等,都為s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值也恰好相等,都為t,那么下列說(shuō)法正確的是()A.直線l1和直線l2有交點(diǎn)(s,t) B.直線l1和直線l2相交,但交點(diǎn)未必是點(diǎn)(s,t)C.直線l1和直線l2必定重合 D.直線l1和直線l2由于斜率相等,所以必定平行7.若函數(shù)至少有1個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是A. B. C. D.8.若f(x)=ax2+bx+c(c≠0)是偶函數(shù),則g(x)=ax3+bx2+cx()A.是奇函數(shù) B.是偶函數(shù)C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)9.在的展開(kāi)式中,含項(xiàng)的系數(shù)為()A.10 B.15 C.20 D.2510.已知等差數(shù)列前9項(xiàng)的和為27,,則A.100 B.99 C.98 D.9711.已知向量,,且,則等于().A. B. C. D.12.在如圖所示的正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(-1,1)的密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為()附:若X~N(μ,σ2),則PA.1193 B.1359 C.2718 D.3413二、填空題:本題共4小題,每小題5分,共20分。13.已知向量與,則的最小值是__________.14.設(shè)等差數(shù)列的前項(xiàng)和為,,,則取得最小值的值為_(kāi)_______.15.為定義在上的奇函數(shù),且,則_____.16.已知為虛數(shù)單位,則復(fù)數(shù)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減,q:函數(shù)y=x2+(2a-3)x+1的圖像與x軸交于不同的兩點(diǎn).如果p∨q真,p∧q假,求實(shí)數(shù)a的取值范圍.18.(12分)某單位為了了解用電量(度)與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,并制作了對(duì)照表,由表中數(shù)據(jù)得線性回歸方程,其中.現(xiàn)預(yù)測(cè)當(dāng)氣溫為-時(shí),用電量的度數(shù)約為多少?用電量(度)24343864氣溫181310-119.(12分)大型水果超市每天以元/千克的價(jià)格從水果基地購(gòu)進(jìn)若干水果,然后以元/千克的價(jià)格出售,若有剩余,則將剩余的水果以元/千克的價(jià)格退回水果基地,為了確定進(jìn)貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:日需求量頻數(shù)以天記錄的各日需求量的頻率代替各日需求量的概率.(1)求該超市水果日需求量(單位:千克)的分布列;(2)若該超市一天購(gòu)進(jìn)水果千克,記超市當(dāng)天水果獲得的利潤(rùn)為(單位:元),求的分布列及其數(shù)學(xué)期望.20.(12分)某城市理論預(yù)測(cè)2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示年份2010+x(年)01234人口數(shù)y(十萬(wàn))5781119(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(2)據(jù)此估計(jì)2015年該城市人口總數(shù).21.(12分)已知.(Ⅰ)計(jì)算的值;(Ⅱ)若,求中含項(xiàng)的系數(shù);(Ⅲ)證明:.22.(10分)已知函數(shù),函數(shù)⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;⑵若,函數(shù)在上的最小值是2,求的值;⑶在⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】

在頻率等高條形圖中,與相差很大時(shí),我們認(rèn)為兩個(gè)分類變量有關(guān)系,即可得出結(jié)論.【題目詳解】在頻率等高條形圖中,與相差很大時(shí),我們認(rèn)為兩個(gè)分類變量有關(guān)系,四個(gè)選項(xiàng)中,即等高的條形圖中x1,x2所占比例相差越大,則分類變量x,y關(guān)系越強(qiáng),故選D.【題目點(diǎn)撥】本題考查獨(dú)立性檢驗(yàn)內(nèi)容,使用頻率等高條形圖,可以粗略的判斷兩個(gè)分類變量是否有關(guān)系,是基礎(chǔ)題2、D【解題分析】

利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.【題目詳解】解:∵復(fù)數(shù),∴復(fù)數(shù)的虛部是﹣1,故選:D.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,屬于基礎(chǔ)題.3、B【解題分析】

“至少有一個(gè)”的否定變換為“一個(gè)都沒(méi)有”,即可求出結(jié)論.【題目詳解】“三角形的內(nèi)角中至少有一個(gè)不大于60°”時(shí),反設(shè)是假設(shè)三內(nèi)角都大于.故選:B.【題目點(diǎn)撥】本題考查反證法的概念,注意邏輯用語(yǔ)的否定,屬于基礎(chǔ)題.4、B【解題分析】

由并集的定義求解即可.【題目詳解】由題,則,故選:B【題目點(diǎn)撥】本題考查集合的并集運(yùn)算,屬于基礎(chǔ)題.5、A【解題分析】

由歸納假設(shè),推得的結(jié)論,結(jié)合放縮法,便可以得出結(jié)論.【題目詳解】假設(shè)當(dāng)時(shí),++…+,故當(dāng)時(shí),++…++<,因?yàn)?,++…+,故選A.【題目點(diǎn)撥】本題主要考查數(shù)學(xué)歸納法的步驟,以及放縮法的運(yùn)用,意在考查學(xué)生的邏輯推理能力.6、A【解題分析】

根據(jù)回歸直線過(guò)樣本數(shù)據(jù)中心點(diǎn),并結(jié)合回歸直線的斜率來(lái)進(jìn)行判斷?!绢}目詳解】由于回歸直線必過(guò)樣本的數(shù)據(jù)中心點(diǎn),則回歸直線和回歸直線都過(guò)點(diǎn),做了兩次試驗(yàn),兩條回歸直線的斜率沒(méi)有必然的聯(lián)系,若斜率不相等,則兩回歸直線必交于點(diǎn),若斜率相等,則兩回歸直線重合,所以,A選項(xiàng)正確,B、C、D選項(xiàng)錯(cuò)誤,故選:A.【題目點(diǎn)撥】本題考查回歸直線的性質(zhì),考查“回歸直線過(guò)樣本數(shù)據(jù)的中心點(diǎn)”這個(gè)結(jié)論,同時(shí)也要抓住回歸直線的斜率來(lái)理解,考查分析理解能力,屬于基礎(chǔ)題。7、C【解題分析】

令,則函數(shù)至少有1個(gè)零點(diǎn)等價(jià)于函數(shù)至少有1個(gè)零點(diǎn),對(duì)函數(shù)求導(dǎo),討論和時(shí),函數(shù)的單調(diào)性,以及最值的情況,即可求出滿足題意的實(shí)數(shù)的取值范圍?!绢}目詳解】由題可得函數(shù)的定義域?yàn)?;令,則,函數(shù)至少有1個(gè)零點(diǎn)等價(jià)于函數(shù)至少有1個(gè)零點(diǎn);;(1)當(dāng)時(shí),則在上恒成立,即函數(shù)在單調(diào)遞增,當(dāng)時(shí),,當(dāng)時(shí),,由零點(diǎn)定理可得當(dāng)時(shí),函數(shù)在有且只有一個(gè)零點(diǎn),滿足題意;(2)當(dāng)時(shí),令,解得:,令,解得:,則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時(shí),,所以要使函數(shù)至少有1個(gè)零點(diǎn),則,解得:綜上所述:實(shí)數(shù)的取值范圍是:故答案選C【題目點(diǎn)撥】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)的問(wèn)題,由導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及最值是解題的關(guān)鍵,屬于中檔題。8、A【解題分析】若f(x)=ax2+bx+c(c≠0)是偶函數(shù),則,則是奇函數(shù),選A.9、B【解題分析】分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出的第項(xiàng),令的指數(shù)為2求出展開(kāi)式中的系數(shù).然后求解即可.詳解:6展開(kāi)式中通項(xiàng)

令可得,,

∴展開(kāi)式中x2項(xiàng)的系數(shù)為1,

在的展開(kāi)式中,含項(xiàng)的系數(shù)為:1.

故選:B.點(diǎn)睛:本題考查二項(xiàng)展開(kāi)式的通項(xiàng)的簡(jiǎn)單直接應(yīng)用.牢記公式是基礎(chǔ),計(jì)算準(zhǔn)確是關(guān)鍵.10、C【解題分析】試題分析:由已知,所以故選C.【考點(diǎn)】等差數(shù)列及其運(yùn)算【名師點(diǎn)睛】等差、等比數(shù)列各有五個(gè)基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運(yùn)算問(wèn)題轉(zhuǎn)化為解關(guān)于基本量的方程(組),因此可以說(shuō)數(shù)列中的絕大部分運(yùn)算題可看作方程應(yīng)用題,所以用方程思想解決數(shù)列問(wèn)題是一種行之有效的方法.11、B【解題分析】

由向量垂直可得,求得x,及向量的坐標(biāo)表示,再利用向量加法的坐標(biāo)運(yùn)算和向量模的坐標(biāo)運(yùn)算可求得模.【題目詳解】由,可得,代入坐標(biāo)運(yùn)算可得x-4=0,解得x=4,所以,得=5,選B.【題目點(diǎn)撥】求向量的模的方法:一是利用坐標(biāo),二是利用性質(zhì),結(jié)合向量數(shù)量積求解.12、B【解題分析】由正態(tài)分布的性質(zhì)可得,圖中陰影部分的面積S=0.9545-0.6827則落入陰影部分(曲線C為正態(tài)分布N(-1,1)的密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為本題選擇B選項(xiàng).點(diǎn)睛:關(guān)于正態(tài)曲線在某個(gè)區(qū)間內(nèi)取值的概率求法①熟記P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正態(tài)曲線的對(duì)稱性和曲線與x軸之間面積為1.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

,所以,所以,故當(dāng)時(shí),的最小值是.考點(diǎn):向量的模點(diǎn)評(píng):本題考查向量的模的最值,解題的關(guān)鍵是能準(zhǔn)確的表示出模的函數(shù),再求解最值.14、2【解題分析】

求出數(shù)列的首項(xiàng)和公差,求出的表達(dá)式,然后利用基本不等式求出的最小值并求出等號(hào)成立時(shí)的值,于此可得出答案.【題目詳解】設(shè)等等差數(shù)列的公差為,則,解得,所以,,所以,,等號(hào)成立,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,但,由雙勾函數(shù)的單調(diào)性可知,當(dāng)或時(shí),取最小值,當(dāng)時(shí),;當(dāng)時(shí),,,因此,當(dāng)時(shí),取最小值,故答案為.【題目點(diǎn)撥】本題考查等差數(shù)列的求和公式,考查基本不等式與雙勾函數(shù)求最值,利用基本不等式要注意“一正、二定、三相等”這三個(gè)條件,在等號(hào)不成立時(shí),則應(yīng)考查雙勾函數(shù)的單調(diào)性求解,考查分析能力與計(jì)算能力,屬于中等題.15、【解題分析】

根據(jù)已知將x=x+2代入等式可得,可知為周期T=4的周期函數(shù),化簡(jiǎn),再由奇函數(shù)的性質(zhì)可得其值.【題目詳解】由題得,則有,因?yàn)闉槎x在R上的奇函數(shù),那么,則,故.【題目點(diǎn)撥】本題考查奇函數(shù)的性質(zhì)和周期函數(shù),屬于常見(jiàn)考題.16、【解題分析】

由復(fù)數(shù)乘法法則即可計(jì)算出結(jié)果【題目詳解】.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的乘法計(jì)算,只需按照計(jì)算法則即可得到結(jié)果,較為簡(jiǎn)單三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、[,1)∪(,+∞).【解題分析】

先求出當(dāng)命題p,q為真命題時(shí)的取值范圍,由p∨q真,p∧q假可得p與q一真一假,由此可得關(guān)于的不等式組,解不等式組可得結(jié)論.【題目詳解】當(dāng)命題p為真,即函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減時(shí),可得.當(dāng)命題q為真,即函數(shù)y=x2+(2a-3)x+1的圖像與x軸交于不同的兩點(diǎn),可得,解得,又,所以當(dāng)q為真命題時(shí),有.∵p∨q為真,p∧q為假,∴p與q一真一假.①若p真q假,則,解得;②若p假q真,則,解得.綜上可得或.∴實(shí)數(shù)a的取值范圍是[,1)∪(,+∞).【題目點(diǎn)撥】根據(jù)命題的真假求參數(shù)的取值范圍的步驟:(1)求出當(dāng)命題p,q為真命題時(shí)所含參數(shù)的取值范圍;(2)判斷命題p,q的真假性;(3)根據(jù)命題的真假情況,利用集合的交集和補(bǔ)集的運(yùn)算,求解參數(shù)的取值范圍.18、.【解題分析】分析:先求均值,代入求得,再求自變量為-4所對(duì)應(yīng)函數(shù)值即可.詳解:由題意可知=(18+13+10-1)=10,=(24+34+38+64)=40,=-2.又回歸方程=-2x+過(guò)點(diǎn)(10,40),故=60.所以當(dāng)x=-4時(shí),=-2×(-4)+60=68.故當(dāng)氣溫為-4℃時(shí),用電量的度數(shù)約為68度.點(diǎn)睛:函數(shù)關(guān)系是一種確定的關(guān)系,相關(guān)關(guān)系是一種非確定的關(guān)系.事實(shí)上,函數(shù)關(guān)系是兩個(gè)非隨機(jī)變量的關(guān)系,而相關(guān)關(guān)系是非隨機(jī)變量與隨機(jī)變量的關(guān)系.如果線性相關(guān),則直接根據(jù)用公式求,寫(xiě)出回歸方程,回歸直線方程恒過(guò)點(diǎn).19、(1)分布列見(jiàn)解析.(2)分布列見(jiàn)解析;元.【解題分析】分析:(1)根據(jù)表格得到該超市水果日需求量(單位:千克)的分布列;(2)若A水果日需求量為140千克,則X=140×(15﹣10)﹣(150﹣140)×(10﹣8)=680元,則P(X=680)==0.1.若A水果日需求量不小于150千克,則X=150×(15﹣10)=750元,且P(X=750)=1﹣0.1=0.2.由此能求出X的分布列和數(shù)學(xué)期望E(X).詳解:(1)的分布列為(2)若水果日需求量為千克,則元,且.若水果日需求量不小于千克,則元,且.故的分布列為元.點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:第一步是“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;第二步是:“探求概率”,即利用排列組合、枚舉法、概率公式(常見(jiàn)的有古典概型公式、幾何概型公式、互斥事件的概率和公式、獨(dú)立事件的概率積公式,以及對(duì)立事件的概率公式等),求出隨機(jī)變量取每個(gè)值時(shí)的概率;第三步是“寫(xiě)分布列”,即按規(guī)范形式寫(xiě)出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或事件的概率是否正確;第四步是“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值,對(duì)于有些實(shí)際問(wèn)題中的隨機(jī)變量,如果能夠斷定它服從某常見(jiàn)的典型分布(如二項(xiàng)分布X~B(n,p)),則此隨機(jī)變量的期望可直接利用這種典型分布的期望公式(E(X)=np)求得.20、(1);(2)196萬(wàn).【解題分析】試題分析:(1)先求出五對(duì)數(shù)據(jù)的平均數(shù),求出年份和人口數(shù)的平均數(shù),得到樣本中心點(diǎn),把所給的數(shù)據(jù)代入公式,利用最小二乘法求出線性回歸方程的系數(shù),再求出a的值,從而得到線性回歸方程;(2)把x=5代入線

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論