版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省蕪湖市名校2023年數(shù)學九上期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.方程的根是()A.5和 B.2和 C.8和 D.3和2.如圖,是由一些相同的小正方形圍成的立方體圖形的三視圖,則構成這種幾何體的小正方形的個數(shù)是()A.4 B.6 C.9 D.123.某市計劃爭取“全面改薄”專項資金120000000元,用于改造農村義務教育薄弱學校100所數(shù)據(jù)120000000用科學記數(shù)法表示為()A.12×108 B.1.2×108 C.1.2×109 D.0.12×1094.在圓內接四邊形中,與的比為,則的度數(shù)為()A. B. C. D.5.如圖所示的拋物線是二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列結論:①abc>0;②b+2a=0;③拋物線與x軸的另一個交點為(4,0);④a+c>b,其中正確的結論有()A.1個 B.2個 C.3個 D.4個6.2018年是江華縣脫貧攻堅摘帽決勝年,11月25號市檢查組來我縣隨機抽查了50戶貧困戶,其中還有1戶還沒有達到脫貧的標準,請聰明的你估計我縣3000戶貧困戶能達到脫貧標準的大約有()戶A.60 B.600 C.2940 D.24007.如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F.P是⊙A上一點,且∠EPF=40°,則圖中陰影部分的面積是()A.4- B.4- C.8- D.8-8.對于函數(shù),下列說法錯誤的是()A.這個函數(shù)的圖象位于第一、第三象限B.這個函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形C.當x>0時,y隨x的增大而增大D.當x<0時,y隨x的增大而減小9.的相反數(shù)是()A. B.2 C. D.10.已知關于的一元二次方程有兩個相等的實數(shù)根,則()A.4 B.2 C.1 D.﹣4二、填空題(每小題3分,共24分)11.二次函數(shù)y=x2+bx+c的圖象上有兩點(3,4)和(﹣5,4),則此拋物線的對稱軸是直線x=________12.已知扇形的圓心角為120°,弧長為4π,則扇形的面積是___.13.年月日我國自主研發(fā)的大型飛機成功首飛,如圖給出了一種機翼的示意圖,其中,,則的長為_______.14.若分式的值為0,則x的值為_______.15.拋物線y=x2+2x與y軸的交點坐標是_____.16.小亮在投籃訓練中,對多次投籃的數(shù)據(jù)進行記錄.得到如下頻數(shù)表:投籃次數(shù)20406080120160200投中次數(shù)1533496397128160投中的頻率0.750.830.820.790.810.80.8估計小亮投一次籃,投中的概率是______.17.一組正方形按如圖所示的方式放置,其中頂點在軸上,頂點,,,,,,在軸上,已知正方形的邊長為,,則正方形的邊長為__________________.18.如圖,已知A(5,0),B(4,4),以OA、AB為邊作?OABC,若一個反比例函數(shù)的圖象經過C點,則這個函數(shù)的解析式為_____.三、解答題(共66分)19.(10分)“萬州古紅桔”原名“萬縣紅桔”,古稱丹桔(以下簡稱為紅桔),種植距今至少已有一千多年的歷史,“玫瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡稱香橙)現(xiàn)已是萬州柑橘發(fā)展的主推品種之一.某水果店老板在2017年11月份用15200元購進了400千克紅桔和600千克香橙,已知香橙的每千克進價比紅桔的每千克進價2倍還多4元.(1)求11月份這兩種水果的進價分別為每千克多少元?(2)時下正值柑橘銷售旺季,水果店老板決定在12月份繼續(xù)購進這兩種水果,但進入12月份,由于柑橘的大量上市,紅桔和香橙的進價都有大幅下滑,紅桔每千克的進價在11月份的基礎上下降了%,香橙每千克的進價在11月份的基礎上下降了%,由于紅桔和“玫瑰香橙”都深受庫區(qū)人民歡迎,實際水果店老板在12月份購進的紅桔數(shù)量比11月份增加了%,香橙購進的數(shù)量比11月份增加了2%,結果12月份所購進的這兩種柑橘的總價與11月份所購進的這兩種柑橘的總價相同,求的值.20.(6分)已知關于的方程(1)當m取何值時,方程有兩個實數(shù)根;(2)為m選取一個合適的整數(shù),使方程有兩個不相等的實數(shù)根,并求出這兩個實數(shù)根.21.(6分)有一只拉桿式旅行箱(圖1),其側面示意圖如圖2所示,已知箱體長AB=50cm,拉桿BC的伸長距離最大時可達35cm,點A,B,C在同一條直線上,在箱體底端裝有圓形的滾筒輪⊙A,⊙A與水平地面相切于點D,在拉桿伸長到最大的情況下,當點B距離水平地面34cm時,點C到水平地面的距離CE為55cm.設AF∥MN.(1)求⊙A的半徑.(2)當人的手自然下垂拉旅行箱時,人感到較為舒服,某人將手自然下垂在C端拉旅行箱時,CE為76cm,∠CAF=64°,求此時拉桿BC的伸長距離(結果精確到1cm,參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).22.(8分)如圖,是半圓的直徑,是半圓上的點,且于點,連接,若.求半圓的半徑長;求的長.23.(8分)如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.24.(8分)如圖,在中,,是外接圓,點是圓上一點,點,分別在兩側,且,連接,延長到點,使.(1)求證:為的切線;(2)若的半徑為1,當是直角三角形時,求的面積.25.(10分)某運動品牌對第一季度A、B兩款運動鞋的銷售情況進行統(tǒng)計,兩款運動鞋的銷售量及總銷售額如圖所示:(1)一月份B款運動鞋的銷售量是A款的80%,則一月份B款運動鞋銷售了多少雙?(2)第一季度這兩款運動鞋的銷售單價保持不變,求三月份的總銷售額(銷售額=銷售單價×銷售量)(3)結合第一季度的銷售情況,請你對這兩款運動鞋的進貨、銷售等方面提出一條建議.26.(10分)如圖,AB為⊙O直徑,點D為AB下方⊙O上一點,點C為弧ABD中點,連接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)過點C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】利用直接開平方法解方程即可得答案.【詳解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故選:C.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關鍵.2、D【分析】根據(jù)三視圖,得出立體圖形,從而得出小正方形的個數(shù).【詳解】根據(jù)三視圖,可得立體圖形如下,我們用俯視圖添加數(shù)字的形式表示,數(shù)字表示該圖形俯視圖下有幾個小正方形則共有:1+1+1+2+2+2+1+1+1=12故選:D【點睛】本題考查三視圖,解題關鍵是在腦海中構建出立體圖形,建議可以如本題,通過在俯視圖上標數(shù)字的形式表示立體圖形幫助分析.3、B【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】120000000=1.2×108,故選:B.【點睛】此題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、C【分析】根據(jù)圓內接四邊形對角互補的性質即可求得.【詳解】∵在圓內接四邊形ABCD中,:=3:2,∴∠B:∠D=3:2,∵∠B+∠D=180°,∴∠B=180°×=.故選C.【點睛】本題考查了圓內接四邊形的性質,熟練掌握圓內接四邊形的性質是解題的關鍵.5、C【解析】試題分析:∵拋物線開口向上,∴a>0,∵拋物線的對稱軸為直線x==1,∴b=﹣2a<0,所以②正確;∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc>0,所以①正確;∵點(﹣2,0)關于直線x=1的對稱點的坐標為(4,0),∴拋物線與x軸的另一個交點坐標為(4,0),所以③正確;∵x=﹣1時,y<0,即a﹣b+c<0,∴a+c<b,所以④錯誤.故選C.考點:拋物線與x軸的交點;二次函數(shù)圖象與系數(shù)的關系.6、C【分析】由題意根據(jù)用總戶數(shù)乘以能達到脫貧標準所占的百分比即可得出答案.【詳解】解:根據(jù)題意得:(戶),答:估計我縣3000戶貧困戶能達到脫貧標準的大約有2940戶.故選:C.【點睛】本題考查的是通過樣本去估計總體,注意掌握總體平均數(shù)約等于樣本平均數(shù)是解題的關鍵.7、B【解析】試題解析:連接AD,
∵BC是切線,點D是切點,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF=,
S△ABC=AD?BC=×2×4=4,
∴S陰影部分=S△ABC-S扇形AEF=4-π.8、C【解析】試題分析:根據(jù)反比例函數(shù)的圖像與性質,可由題意知k=4>0,其圖像在一三象限,且在每個象限y隨x增大而減小,它的圖像即是軸對稱圖形又是中心對稱圖形.故選C點睛:反比例函數(shù)的圖像與性質:1、當k>0時,圖像在一、三象限,在每個象限內,y隨x增大而減??;2、當k<0時,圖像在二、四象限,在每個象限內,y隨x增大而增大.3、反比例函數(shù)的圖像即是軸對稱圖形又是中心對稱圖形.9、B【分析】根據(jù)相反數(shù)的性質可得結果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質是解題的關鍵.10、A【分析】根據(jù)方程有兩個相等的實數(shù)根結合根的判別式即可得出關于的一元一次方程,解方程即可得出結論.【詳解】解:∵方程有兩個相等的實數(shù)根,∴,解得:.故選A.【點睛】本題考查了根的判別式以及解一元一次方程,由方程有兩個相等的實數(shù)根結合根的判別式得出關于的一元一次方程是解題的關鍵.二、填空題(每小題3分,共24分)11、-1【解析】根據(jù)兩已知點的坐標特征得到它們是拋物線的對稱點,而這兩個點關于直線x=-1對稱,由此可得到拋物線的對稱軸.【詳解】∵點(3,4)和(-5,4)的縱坐標相同,∴點(3,4)和(-5,4)是拋物線的對稱點,而這兩個點關于直線x=-1對稱,∴拋物線的對稱軸為直線x=-1.故答案為-1.【點睛】本題考查了二次函數(shù)的性質:二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-,),對稱軸直線x=-.12、12π.【分析】利用弧長公式即可求扇形的半徑,進而利用扇形的面積公式即可求得扇形的面積.【詳解】設扇形的半徑為r.則=4π,解得r=6,∴扇形的面積==12π,故答案為12π.【點睛】本題考查了扇形面積求法,用到的知識點為:扇形的弧長公式l=,扇形的面積公式S=,解題的關鍵是熟記這兩個公式.13、【分析】延長交于點,設于點,通過解直角三角形可求出、的長度,再利用即可求出結論.【詳解】延長交于點,設于點,如圖所示,在中,,,.在中,,,,,,,,故答案為:.【點睛】本題考查了解直角三角形的應用.通過解直角三角形求出、的長度是解題的關鍵.14、-1【分析】根據(jù)分式的值為零的條件可以求出x的值.【詳解】解:根據(jù)題意得:,解得:x=-1.
故答案為:-1.【點睛】若分式的值為零,需同時具備兩個條件:(1)分子為2;(2)分母不為2.這兩個條件缺一不可.15、(0,0)【解析】令x=0求出y的值,然后寫出即可.【詳解】令x=0,則y=0,所以,拋物線與y軸的交點坐標為(0,0).故答案為(0,0).【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,熟練掌握拋物線與坐標軸的交點的求解方法是解題的關鍵.16、0.1【分析】由小亮每次投籃的投中的頻率繼而可估計出這名球員投一次籃投中的概率.【詳解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的頻率大都穩(wěn)定在0.1左右,∴估計小亮投一次籃投中的概率是0.1,故答案為:0.1.【點睛】本題比較容易,考查了利用頻率估計概率.大量反復試驗下頻率值即概率.概率=所求情況數(shù)與總情況數(shù)之比.17、【分析】由正方形的邊長為,,,得D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,根據(jù)三角函數(shù)的定義和正方形的性質,即可得到答案.【詳解】∵正方形的邊長為,,,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1=,B2C2==,同理可得:B3C3=,以此類推:正方形的邊長為:,∴正方形的邊長為:.故答案是:.【點睛】本題主要考查正方形的性質和三角函數(shù)的定義綜合,掌握用三角函數(shù)的定義解直角三角形,是解題的關鍵.18、y=﹣【分析】直接利用平行四邊形的性質得出C點坐標,再利用反比例函數(shù)解析式的求法得出答案.【詳解】解:∵A(5,0),B(4,4),以OA、AB為邊作?OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一個反比例函數(shù)的圖象經過C點,則這個函數(shù)的解析式為:y=﹣.故答案為:y=﹣.【點睛】本題主要考查的是平行四邊形的性質和反比例函數(shù)解析式的求法,將反比例函數(shù)上的點帶入解析式中即可求解.三、解答題(共66分)19、(1)11月份紅桔的進價為每千克8元,香橙的進價為每千克20元;(2)m的值為49.1.【解析】(1)設11月份紅桔的進價為每千克x元,香橙的進價為每千克y元,依題意有,解得,答:11月份紅桔的進價為每千克8元,香橙的進價為每千克20元;(2)依題意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值為49.1.20、(1)m≥—;(2)x1=0,x2=2.【分析】(1)方程有兩個實數(shù)根,必須滿足△=b2?4ac≥0,從而建立關于m的不等式,求出實數(shù)m的取值范圍.(2)答案不唯一,方程有兩個不相等的實數(shù)根,即△>0,可以解得m>?,在m>?的范圍內選取一個合適的整數(shù)求解就可以.【詳解】解:(1)△=[-2(m+1)]2-4×1×m2=8m+4∵方程有兩個實數(shù)根∴△≥0,即8m+4≥0解得,m≥-(2)選取一個整數(shù)0,則原方程為,x2-2x=0解得x1=0,x2=2.【點睛】此題主要考查了根的判別式,以及解一元二次方程,關鍵是掌握一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.21、(1)4;(2)BC=30cm【分析】(1)作BK⊥AF于點H,交MN于點K,通過△ABH∽△ACG,根據(jù)相似三角形的性質可得關于x的方程,求解即可;(2)在Rt△ACG中利用正弦值解線段AC長,即可得.【詳解】(1)解:作BK⊥AF于點H,交MN于點K,則BH∥CG,△ABH∽△ACG,設圓形滾輪的半徑AD長為xcm,∴即解得,x=4∴⊙A的半徑是4cm.(2)在Rt△ACG中,CG=76-4=72cm,則sin∠CAF=∴AC=cm,∴BC=AC-AB=80-50=30cm.【點睛】本題考查相似三角形的判定與性質,銳角三角函數(shù),構建相似三角形及建立模型是解答此題的關鍵.22、半圓的半徑為;【分析】(1)根據(jù)垂徑定理的推論得到OD⊥AC,AE=AC,設圓的半徑為r,根據(jù)勾股定理列出方程,解方程即可;(2)由題意根據(jù)圓周角定理得到∠C=90°,根據(jù)勾股定理計算即可.【詳解】解:于點且,設半徑為,則在中有解得:即半圓的半徑為;為半圓的直徑則在中有.【點睛】本題考查的是圓心角、弧、弦的關系定理、垂徑定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧是解題的關鍵.23、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標,表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應用,相似三角形的判定與性質以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.24、(1)詳見解析;(2)或【分析】(1)先證,再證,得到,即可得出結論;(2)分當時和當時兩種情況分別求解即可.【詳解】(1)∵,∴,∵,,∴,∵是直徑,∴,∴,∴,∴,∴,∴是的切線.(2)①當時,,是等邊三角形,可得,∵,∴,,∴.②當時,易知,的邊上的高,∴.【點睛】此題是圓的綜合題,主要考查了切線的性質和判定,等邊三角形的判定和性質,求三角形的面積熟練掌握切線的判定與圓周角定理是解題的關鍵.25、(1)40;(2)39000;(3)答案不唯一,詳見解析【分析】(1)用一月份A款的數(shù)量乘以,即可得出一月份B款運動鞋銷售量;(2)設A,B兩款運動鞋的銷量單價分別為x元,y元,根據(jù)圖形中給出的數(shù)據(jù),列出算式,再進行計算即可;(3)根據(jù)條形統(tǒng)計圖和折線統(tǒng)計圖所給出的數(shù)據(jù),提出合理的建議即可.【詳解】解:(1),一月份款運動鞋銷售了40雙.(2)設兩款運動鞋的銷售單價分別為元,則根據(jù)題意,得,解得三月份的總銷售額為(元).(3)答案不唯一,如:從銷售量來看,款運動鞋銷售量逐月上升,比款運動鞋銷售量大,建議多進款運動鞋,少進或不進款運動鞋.從總銷售額來看,由于款運動鞋銷售量逐月減少,導致總銷售額減少,建議采取一些促銷手段,增加款運動
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科技學院《素描2》2023-2024學年第一學期期末試卷
- 廣東江門幼兒師范高等??茖W?!峨娮由虅张c電子支付》2023-2024學年第一學期期末試卷
- 廣東行政職業(yè)學院《土力學與地基基礎(B)》2023-2024學年第一學期期末試卷
- 廣東工貿職業(yè)技術學院《三維技術基礎》2023-2024學年第一學期期末試卷
- 廣東工程職業(yè)技術學院《多元統(tǒng)計分析(SPSS)》2023-2024學年第一學期期末試卷
- 廣東財貿職業(yè)學院《播音主持創(chuàng)作實踐》2023-2024學年第一學期期末試卷
- 《模具開發(fā)》課件
- 基本藥物制度政策培訓課件
- 油庫反恐課件培訓
- 贛西科技職業(yè)學院《教師語言與書寫技能》2023-2024學年第一學期期末試卷
- GB/T 45002-2024水泥膠砂保水率測定方法
- 2024年《論教育》全文課件
- 浙江省溫州市鹿城區(qū)2023-2024學年三年級上學期期末數(shù)學試卷
- 生命安全與救援學習通超星期末考試答案章節(jié)答案2024年
- (正式版)SHT 3158-2024 石油化工管殼式余熱鍋爐
- 大一中國近代史綱要期末考試試題及答案
- 文創(chuàng)園項目可行性方案
- 馬工程版《中國經濟史》各章思考題答題要點及詳解
- OBE理念下的一流專業(yè)和課程建設
- 一年級口算天天練(可直接打印)
- 建筑幕墻安裝工程監(jiān)理實施細則(工程通用版范本)
評論
0/150
提交評論