版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北京市101中學(xué)2023年數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列結(jié)論中,錯誤的有:()①所有的菱形都相似;②放大鏡下的圖形與原圖形不一定相似;③等邊三角形都相似;④有一個角為110度的兩個等腰三角形相似;⑤所有的矩形不一定相似.A.1個 B.2個 C.3個 D.4個2.把一張矩形的紙片對折后和原矩形相似,那么大矩形與小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:13.如圖,△ABC中,AB=AC,∠ABC=70°,點(diǎn)O是△ABC的外心,則∠BOC的度數(shù)為()A.40° B.60° C.70° D.80°4.已知關(guān)于x的一元二次方程x2-(2k+1)x+k+1=0,若x1+x2=3,則k的值是()A.0 B.1 C.﹣1 D.25.關(guān)于的方程是一元二次方程,則的取值范圍是()A. B. C. D.6.如圖,在平行四邊形中,為的中點(diǎn),為上一點(diǎn),交于點(diǎn),,則的長為()A. B. C. D.7.用配方法解方程,變形后的結(jié)果正確的是()A. B. C. D.8.如圖,四邊形是的內(nèi)接四邊形,與的延長線交于點(diǎn),與的延長線交于點(diǎn),,,則的度數(shù)為()A.38° B.48° C.58° D.68°9.如圖,已知直線,直線、與、、分別交于點(diǎn)、、和、、,,,,()A.7 B.7.5 C.8 D.4.510.如圖所示,已知為的直徑,直線為圓的一條切線,在圓周上有一點(diǎn),且使得,連接,則的大小為()A. B. C. D.二、填空題(每小題3分,共24分)11.在一個不透明的盒子中裝有除了顏色以外沒有任何其他區(qū)別的1個黑球和2個紅球,從盒子中任意取出1個球,取出紅球的概率是____.12.計(jì)算:=_____________13.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復(fù)摸球試驗(yàn)后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計(jì)盒子中小球的個數(shù)是_______.14.如圖,矩形的頂點(diǎn),在反比例函數(shù)的圖象上,若點(diǎn)的坐標(biāo)為,,軸,則點(diǎn)的坐標(biāo)為__.15.若一元二次方程的一個根是,則__________.16.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=2:3,則△ADE與△ABC的面積之比為________.17.將三角形紙片(△ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′,F(xiàn),C為頂點(diǎn)的三角形與△ABC相似,則BF的長度是_________.18.二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點(diǎn)A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是_____.三、解答題(共66分)19.(10分)定義:如圖1,點(diǎn)P為∠AOB平分線上一點(diǎn),∠MPN的兩邊分別與射線OA,OB交于M,N兩點(diǎn),若∠MPN繞點(diǎn)P旋轉(zhuǎn)時(shí)始終滿足OM?ON=OP2,則稱∠MPN是∠AOB的“相關(guān)角”.(1)如圖1,已知∠AOB=60°,點(diǎn)P為∠AOB平分線上一點(diǎn),∠MPN的兩邊分別與射線OA,OB交于M,N兩點(diǎn),且∠MPN=150°.求證:∠MPN是∠AOB的“相關(guān)角”;(2)如圖2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相關(guān)角”,連結(jié)MN,用含α的式子分別表示∠MPN的度數(shù)和△MON的面積;(3)如圖3,C是函數(shù)(x0)圖象上的一個動點(diǎn),過點(diǎn)C的直線CD分別交x軸和y軸于點(diǎn)A,B兩點(diǎn),且滿足BC=3CA,∠AOB的“相關(guān)角”為∠APB,請直接寫出OP的長及相應(yīng)點(diǎn)P的坐標(biāo).20.(6分)小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:(1)他認(rèn)為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.(2)如圖②,已知矩形,如果在矩形外存在一點(diǎn),使得,求證:.(可以直接用第(1)問的結(jié)論)(3)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時(shí)矩形的兩條鄰邊與的數(shù)量關(guān)系.21.(6分)為紀(jì)念“五四運(yùn)動”100周年,某校舉行了征文比賽,該校學(xué)生全部參加了比賽.比賽設(shè)置一等、二等、三等三個獎項(xiàng),賽后該校對學(xué)生獲獎情況做了抽樣調(diào)查,并將所得數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問題:(1)本次抽樣調(diào)查學(xué)生的人數(shù)為.(2)補(bǔ)全兩個統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中A所對應(yīng)扇形圓心角的度數(shù).(3)若該校共有840名學(xué)生,請根據(jù)抽樣調(diào)查結(jié)果估計(jì)獲得三等獎的人數(shù).22.(8分)已知二次函數(shù)y=ax2+bx+4經(jīng)過點(diǎn)(2,0)和(﹣2,12).(1)求該二次函數(shù)解析式;(2)寫出它的圖象的開口方向、頂點(diǎn)坐標(biāo)、對稱軸;(3)畫出函數(shù)的大致圖象.23.(8分)如圖,在正方形中,是對角線上的一個動點(diǎn),連接,過點(diǎn)作交于點(diǎn).(1)如圖①,求證:;(2)如圖②,連接為的中點(diǎn),的延長線交邊于點(diǎn),當(dāng)時(shí),求和的長;(3)如圖③,過點(diǎn)作于,當(dāng)時(shí),求的面積.24.(8分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點(diǎn)P,過B點(diǎn)的切線交OP于點(diǎn)C(1)求證:∠CBP=∠ADB(2)若OA=2,AB=1,求線段BP的長.25.(10分)解方程:
26.(10分)如圖,已知拋物線與x軸交于點(diǎn)A、B,與y軸分別交于點(diǎn)C,其中點(diǎn),點(diǎn),且.(1)求拋物線的解析式;(2)點(diǎn)P是線段AB上一動點(diǎn),過P作交BC于D,當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);(3)點(diǎn)M是位于線段BC上方的拋物線上一點(diǎn),當(dāng)恰好等于中的某個角時(shí),求點(diǎn)M的坐標(biāo).
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)相似多邊形的定義判斷①⑤,根據(jù)相似圖形的定義判斷②,根據(jù)相似三角形的判定判斷③④.【詳解】相似多邊形對應(yīng)邊成比例,對應(yīng)角相等,菱形之間的對應(yīng)角不一定相等,故①錯誤;放大鏡下的圖形只是大小發(fā)生了變化,形狀不變,所以一定相似,②錯誤;等邊三角形的角都是60°,一定相似,③正確;鈍角只能是等腰三角形的頂角,則底角只能是35°,所以兩個等腰三角形相似,④正確;矩形之間的對應(yīng)角相等,但是對應(yīng)邊不一定成比例,故⑤正確.有2個錯誤,故選B.【點(diǎn)睛】本題考查相似圖形的判定,注意相似三角形與相似多邊形判定的區(qū)別.2、A【分析】設(shè)原矩形的長為2a,寬為b,對折后所得的矩形與原矩形相似,則【詳解】設(shè)原矩形的長為2a,寬為b,
則對折后的矩形的長為b,寬為a,
∵對折后所得的矩形與原矩形相似,
∴,
∴大矩形與小矩形的相似比是:1;
故選A.【點(diǎn)睛】理解好:如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,這兩個或多個多邊形叫做相似多邊形,相似多邊形對應(yīng)邊的比叫做相似比.3、D【分析】首先根據(jù)等腰三角形的性質(zhì)可得∠A的度數(shù),然后根據(jù)圓周角定理可得∠O=2∠A,進(jìn)而可得答案.【詳解】解:∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=180°?70°×2=40°,
∵點(diǎn)O是△ABC的外心,
∴∠BOC=40°×2=80°,
故選:D.【點(diǎn)睛】此題主要考查了三角形的外接圓和外心,關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧所對的圓周角等于圓心角的一半.4、B【分析】利用根與系數(shù)的關(guān)系得出x1+x2=2k+1,進(jìn)而得出關(guān)于k的方程求出即可.【詳解】解:設(shè)方程的兩個根分別為x1,x2,
由x1+x2=2k+1=3,
解得:k=1,
故選B.【點(diǎn)睛】本題考查了一元二次方程的根與系數(shù)的關(guān)系,能把求k的值的問題轉(zhuǎn)化為解方程得問題是關(guān)鍵.5、A【解析】根據(jù)一元二次方程的定義判斷即可.【詳解】∵是關(guān)于x的一元二次方程,
∴,
故選:A.【點(diǎn)睛】此題主要考查了一元二次方程定義,熟練掌握一元二次方程的定義是解本題的關(guān)鍵.6、B【分析】延長,交于,由,,即可得出答案.【詳解】如圖所示,延長CB交FG與點(diǎn)H∵四邊形ABCD為平行四邊形∴BC=AD=DF+AF=6cm,BC∥AD∴∠FAE=∠HBE又∵E是AB的中點(diǎn)∴AE=BE在△AEF和△BEH中∴△AEF≌△BEH(ASA)∴BH=AF=2cm∴CH=8cm∵BC∥CD∴∠FAG=∠HCG又∠FGA=∠CGH∴△AGF∽△CGH∴∴CG=4AG=12cm∴AC=AG+CG=15cm故答案選擇B.【點(diǎn)睛】本題考查了全等三角形的判定以及相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解決本題的關(guān)鍵.7、D【分析】先將常數(shù)項(xiàng)移到右側(cè),然后兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方,配方后進(jìn)行判斷即可.【詳解】,,,所以,故選D.【點(diǎn)睛】本題考查了配方法解一元二次方程,熟練掌握配方法的一般步驟以及注意事項(xiàng)是解題的關(guān)鍵.8、A【分析】根據(jù)三角形的外角性質(zhì)求出,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)和三角形內(nèi)角和定理計(jì)算即可.【詳解】解:=故選A【點(diǎn)睛】本題考查了圓周角定理及其推論.9、D【分析】根據(jù)平行線分線段成比例定理,列出比例式解答即可.【詳解】∵∴即:故選:D【點(diǎn)睛】本題考查的是平行線分線段成比例定理,掌握定理的內(nèi)容并能正確的列出比例式是關(guān)鍵.10、C【分析】連接OB,由題意可知,△COB是等邊三角形,即可求得∠C,再由三角形內(nèi)角和求得∠BAC,最后根據(jù)切線的性質(zhì)和余角的定義解答即可.【詳解】解:如圖:連接OB∵為的直徑∴∠ACB=90°又∵AO=OC∴OB=AC=OC∴OC=OB=BC∴△COB是等邊三角形∴∠C=60°∴∠BAC=90°-∠C=30°又∵直線為圓的一條切線∴∠CAP=90°∴=∠CAP-∠BAC=60°故答案為C.【點(diǎn)睛】本題主要考查了圓的性質(zhì)、等邊三角形以及切線的性質(zhì)等知識點(diǎn),根據(jù)題意說明△COB是等邊三角形是解答本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)概率的定義即可解題.【詳解】解:一共有3個球,其中有2個紅球,∴紅球的概率=.【點(diǎn)睛】本題考查了概率的實(shí)際應(yīng)用,屬于簡單題,熟悉概念是解題關(guān)鍵.12、-1【分析】根據(jù)二次根式的性質(zhì)和負(fù)整數(shù)指數(shù)冪的運(yùn)算法則進(jìn)行計(jì)算即可.【詳解】故答案為:-1.【點(diǎn)睛】此題主要考查了二次根式的性質(zhì)以及負(fù)整數(shù)指數(shù)冪的運(yùn)算法則,熟練掌握其性質(zhì)和運(yùn)算法則是解此題的關(guān)鍵.13、1【解析】根據(jù)利用頻率估計(jì)概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計(jì)算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計(jì)概率,這個固定的近似值就是這個事件的概率.當(dāng)實(shí)驗(yàn)的所有可能結(jié)果不是有限個或結(jié)果個數(shù)很多,或各種可能結(jié)果發(fā)生的可能性不相等時(shí),一般通過統(tǒng)計(jì)頻率來估計(jì)概率.14、.【分析】根據(jù)矩形的性質(zhì)和點(diǎn)的坐標(biāo),即可得出的縱坐標(biāo)為2,設(shè),根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得出,解得,從而得出的坐標(biāo)為.【詳解】點(diǎn)的坐標(biāo)為,,,四邊形是矩形,,軸,軸,點(diǎn)的縱坐標(biāo)為2,設(shè),矩形的頂點(diǎn),在反比例函數(shù)的圖象上,,,,故答案為.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,矩形的性質(zhì),求得的縱坐標(biāo)為2是解題的關(guān)鍵.15、1【分析】將x=1代入一元二次方程,即可求得m的值,本題得以解決.【詳解】解:∵一元二次方程有一個根為x=1,
∴11-6+m=0,
解得,m=1,
故答案為1.【點(diǎn)睛】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確題意,求出m的值.16、4:1【解析】由DE與BC平行,得到兩對同位角相等,利用兩對角相等的三角形相似得到三角形ADE與三角形ABC相似,利用相似三角形的面積之比等于相似比的平方即可得到結(jié)果.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案為:4:1.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.17、2或【分析】設(shè)BF=,根據(jù)折疊的性質(zhì)用x表示出B′F和FC,然后分兩種情況進(jìn)行討論(1)△B′FC∽△ABC和△B′FC∽△BAC,最后根據(jù)兩三角形相似對應(yīng)邊成比例即可求解.【詳解】設(shè)BF=,則由折疊的性質(zhì)可知:B′F=,F(xiàn)C=,(1)當(dāng)△B′FC∽△ABC時(shí),有,即:,解得:;(2)當(dāng)△B′FC∽△BAC時(shí),有,即:,解得:;綜上所述,可知:若以點(diǎn)B′,F(xiàn),C為頂點(diǎn)的三角形與△ABC相似,則BF的長度是2或故答案為2或.【點(diǎn)睛】本題考查了三角形相似的判定和性質(zhì),解本題時(shí),由于題目中沒有指明△B′FC和△ABC相似時(shí)頂點(diǎn)的對應(yīng)關(guān)系,所以根據(jù)∠C是兩三角形的公共角可知,需分:(1)△B′FC∽△ABC;(2)△B′FC∽△BAC;兩種情況分別進(jìn)行討論,不要忽略了其中任何一種.18、0,2【分析】將點(diǎn)A,B代入二次函數(shù)解析式,求得的值,再代入,解出答案.【詳解】∵經(jīng)過點(diǎn)A(-1,0),B(3,0)∴,解得∴即為解得:或故答案為:或.【點(diǎn)睛】熟練掌握待定系數(shù)法求二次函數(shù)解析式,及提取公因式法解一元二次方程是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2);(3),P點(diǎn)坐標(biāo)為或【分析】(1)由角平分線求出∠MOP=∠NOP=∠AOB=30°,再證出∠OMP=∠OPN,證明△MOP∽△PON,即可得出結(jié)論;(2)由∠MPN是∠AOB的“相關(guān)角”,判斷出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;過點(diǎn)M作MH⊥OB于H,由三角形的面積公式得出:S△MON=ON?MH,即可得出結(jié)論;(3)設(shè)點(diǎn)C(a,b),則ab=3,過點(diǎn)C作CH⊥OA于H;分兩種情況:①當(dāng)點(diǎn)B在y軸正半軸上時(shí);當(dāng)點(diǎn)A在x軸的負(fù)半軸上時(shí),BC=3CA不可能;當(dāng)點(diǎn)A在x軸的正半軸上時(shí);先求出,由平行線得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA?OB,根據(jù)∠APB是∠AOB的“相關(guān)角”,得出OP,即可得出點(diǎn)P的坐標(biāo);②當(dāng)點(diǎn)B在y軸的負(fù)半軸上時(shí);同①的方法即可得出結(jié)論.【詳解】(1)證明:∵∠AOB=60°,P為∠AOB的平分線上一點(diǎn),∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM?ON,∴∠MPN是∠AOB的“相關(guān)角”;(2)解:∵∠MPN是∠AOB的“相關(guān)角”,∴OM?ON=OP2,∴,∵P為∠AOB的平分線上一點(diǎn),∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;過點(diǎn)M作MH⊥OB于H,如圖2,則S△MON=ON?MH=ON?OMsinα=OP2?sinα,∵OP=3,∴S△MON=sinα;(3)設(shè)點(diǎn)C(a,b),則ab=4,過點(diǎn)C作CH⊥OA于H;分兩種情況:①當(dāng)點(diǎn)B在y軸正半軸上時(shí);Ⅰ、當(dāng)點(diǎn)A在x軸的負(fù)半軸上,如圖3所示:BC=3CA不可能,Ⅱ、當(dāng)點(diǎn)A在x軸的正半軸上時(shí),如圖4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA?OB=a?4b=ab=,∵∠APB是∠AOB的“相關(guān)角”,∴OP2=OA?OB,∴,∵∠AOB=90°,OP平分∠AOB,∴點(diǎn)P的坐標(biāo)為:;②當(dāng)點(diǎn)B在y軸的負(fù)半軸上時(shí),如圖5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA?OB=a?2b=ab=,∵∠APB是∠AOB的“相關(guān)角”,∴OP2=OA?OB,∴,∵∠AOB=90°,OP平分∠AOB,∴點(diǎn)P的坐標(biāo)為:;綜上所述:點(diǎn)P的坐標(biāo)為:或.【點(diǎn)睛】本題考查反比例函數(shù)與幾何綜合,掌握數(shù)形結(jié)合和分類討論的思想是解題的關(guān)鍵.20、(1)詳見解析;(2)詳見解析;(3)【分析】(1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;
(2)先判斷出OE=AC,即可得出OE=BD,即可得出結(jié)論;
(3)先判斷出△ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.【詳解】(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,(2)如圖②,連接與,交點(diǎn)為,連接四邊形是矩形(3)如圖3,過點(diǎn)做于點(diǎn)四邊形是矩形,是等邊三角形,由(2)知,在中,,【點(diǎn)睛】此題是四邊形綜合題,主要考查了矩形是性質(zhì),直角三角形的性質(zhì)和判定,含30°角的直角三角形的性質(zhì),三角形的內(nèi)角和公式,解(1)的關(guān)鍵是判斷出∠B=∠BAD,解(2)的關(guān)鍵是判斷出OE=AC,解(3)的關(guān)鍵是判斷出△ABE是底角為30°的等腰三角形,進(jìn)而構(gòu)造直角三角形.21、(1)40;(2)見解析,18°;(3)獲得三等獎的有210人.【分析】(1)根據(jù)B的人數(shù)和所占的百分比可以求得本次抽樣調(diào)查學(xué)生人數(shù);(2)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)和(1)中的結(jié)果可以將統(tǒng)計(jì)圖中所缺的數(shù)據(jù)補(bǔ)充完整并計(jì)算出扇形統(tǒng)計(jì)圖中A所對應(yīng)扇形圓心角的度數(shù);(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以計(jì)算出獲得三等獎的人數(shù).【詳解】解:(1)本次抽樣調(diào)查學(xué)生的人數(shù)為:8÷20%=40,故答案為:40;(2)A所占的百分比為:×100%=5%,D所占的百分比為:×100%=50%,C所占的百分比為:1﹣5%﹣20%﹣50%=25%,獲得三等獎的人數(shù)為:40×25%=10,補(bǔ)全的統(tǒng)計(jì)圖如圖所示,扇形統(tǒng)計(jì)圖中A所對應(yīng)扇形圓心角的度數(shù)是360°×5%=18°;(3)840×25%=210(人),答:獲得三等獎的有210人.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖、用樣本估計(jì)總體,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.22、(1);(2)向上,(1,﹣),直線x=1;(1)詳見解析.【分析】(1)直接利用待定系數(shù)法即可得到拋物線解析式;(2)根據(jù)二次函數(shù)的性質(zhì)求解;(1)利用描點(diǎn)法畫函數(shù)圖象.【詳解】(1)由題意得:解得:,∴拋物線解析式為:;(2)∵(x﹣1)2,∴圖象的開口方向向上,頂點(diǎn)為,對稱軸為直線x=1.故答案為:向上,(1,),直線x=1;(1)如圖;.【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來求解;當(dāng)已知拋物線與x軸有兩個交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來求解.也考查了二次函數(shù)的圖象與性質(zhì).23、(1)見解析;(2);;(3)面積為.【分析】(1)過點(diǎn)M作MF⊥AB于F,作MG⊥BC于G,由正方形的性質(zhì)得出∠ABD=∠DBC=45°,由角平分線的性質(zhì)得出MF=MG,證得四邊形FBGM是正方形,得出∠FMG=90°,證出∠AMF=∠NMG,證明△AMF≌△NMG,即可得出結(jié)論;(2)證明Rt△AMN∽Rt△BCD,得出,求出AN=2,由勾股定理得出BN==4,由直角三角形的性質(zhì)得出OM=OA=ON=AN=,OM⊥AN,證明△PAO∽△NAB,得出,求出OP=,即可得出結(jié)果;(3)過點(diǎn)A作AF⊥BD于F,證明△AFM≌△MHN得出AF=MH,求出AF=BD=×6=3,得出MH=3,MN=2,由勾股定理得出HN=,由三角形面積公式即可得出結(jié)果.【詳解】(1)證明:過點(diǎn)作于,作于,如圖①所示:,四邊形是正方形,,,,,四邊形是正方形,,,,,,在和中,,;(2)解:在中,由(1)知:,,,,,在中,,,,解得:,在中,,在中,是的中點(diǎn),,,,,,,即:,解得:,;(3)解:過點(diǎn)作于,如圖③所示:,,,,,,,在和中,,,在等腰直角中,,,,,,的面積為.【點(diǎn)睛】本題是相似形綜合題目,考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的判定與性質(zhì)、直角三角形的性質(zhì)、勾股定理、角平分線的性質(zhì)等知識;本題綜合性強(qiáng),有一定難度,證明三角形相似和三角形全等是解題的關(guān)鍵.24、(1)證明見解析;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)版股權(quán)質(zhì)押權(quán)責(zé)明確協(xié)議樣本一
- 科技驅(qū)動未來
- 元宵節(jié)數(shù)字營銷解讀
- 2025年度拆除工程噪音污染控制合同4篇
- 2025年度廠房設(shè)備租賃與綠色制造合同范本4篇
- 《中科院化學(xué)課件:不對稱催化反應(yīng)及其在藥物合成中的應(yīng)用》
- 二零二五年度膩?zhàn)硬牧吓l(fā)與零售合同3篇
- 2025年度廠區(qū)裝卸工勞動保障政策宣傳合同4篇
- 2025年度綠色環(huán)保型老舊廠房拆除及重建一體化工程合同4篇
- 2025年度高端醫(yī)療器械研發(fā)與生產(chǎn)合同4篇
- 平面向量及其應(yīng)用試題及答案
- 2024高考復(fù)習(xí)必背英語詞匯3500單詞
- 消防控制室值班服務(wù)人員培訓(xùn)方案
- 《貴州旅游介紹》課件2
- 2024年中職單招(護(hù)理)專業(yè)綜合知識考試題庫(含答案)
- 無人機(jī)應(yīng)用平臺實(shí)施方案
- 挪用公款還款協(xié)議書范本
- 事業(yè)單位工作人員年度考核登記表(醫(yī)生個人總結(jié))
- 盾構(gòu)隧道施工數(shù)字化與智能化系統(tǒng)集成
- 【企業(yè)盈利能力探析文獻(xiàn)綜述2400字】
- 2019年醫(yī)養(yǎng)結(jié)合項(xiàng)目商業(yè)計(jì)劃書
評論
0/150
提交評論