![2024屆安徽省阜陽市潁上第二中學(xué)數(shù)學(xué)高二第二學(xué)期期末達標檢測試題含解析_第1頁](http://file4.renrendoc.com/view11/M01/1D/2F/wKhkGWW-j-uAGwuOAAJddraaIko288.jpg)
![2024屆安徽省阜陽市潁上第二中學(xué)數(shù)學(xué)高二第二學(xué)期期末達標檢測試題含解析_第2頁](http://file4.renrendoc.com/view11/M01/1D/2F/wKhkGWW-j-uAGwuOAAJddraaIko2882.jpg)
![2024屆安徽省阜陽市潁上第二中學(xué)數(shù)學(xué)高二第二學(xué)期期末達標檢測試題含解析_第3頁](http://file4.renrendoc.com/view11/M01/1D/2F/wKhkGWW-j-uAGwuOAAJddraaIko2883.jpg)
![2024屆安徽省阜陽市潁上第二中學(xué)數(shù)學(xué)高二第二學(xué)期期末達標檢測試題含解析_第4頁](http://file4.renrendoc.com/view11/M01/1D/2F/wKhkGWW-j-uAGwuOAAJddraaIko2884.jpg)
![2024屆安徽省阜陽市潁上第二中學(xué)數(shù)學(xué)高二第二學(xué)期期末達標檢測試題含解析_第5頁](http://file4.renrendoc.com/view11/M01/1D/2F/wKhkGWW-j-uAGwuOAAJddraaIko2885.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆安徽省阜陽市潁上第二中學(xué)數(shù)學(xué)高二第二學(xué)期期末達標檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平面與平面平行的條件可以是()A.內(nèi)有無窮多條直線都與平行B.內(nèi)的任何直線都與平行C.直線,直線,且D.直線,且直線不在平面內(nèi),也不在平面內(nèi)2.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的左、右焦點分別為A.5 B.2 C.3 D.23.設(shè)為兩個隨機事件,給出以下命題:(1)若為互斥事件,且,,則;(2)若,,,則為相互獨立事件;(3)若,,,則為相互獨立事件;(4)若,,,則為相互獨立事件;(5)若,,,則為相互獨立事件;其中正確命題的個數(shù)為()A.1 B.2 C.3 D.44.已知函數(shù)y=f(x)是定義域為R的偶函數(shù).當(dāng)x≥0時,f(x)=116x2(0≤x≤2)(12)x(x>2),若關(guān)于x的方程[f(xA.(-∞,-C.(-125.現(xiàn)有四個函數(shù):①;②;③;④的圖象(部分)如下,則按照從左到右圖象對應(yīng)的函數(shù)序號安排正確的一組是()A.①④②③ B.①④③② C.④①②③ D.③④②①6.給出四個函數(shù),分別滿足①;②;③;④,又給出四個函數(shù)圖象正確的匹配方案是()A.①—丁②—乙③—丙④—甲B.①—乙②—丙③—甲④—丁C.①—丙②—甲③—乙④—丁D.①—?、凇注邸尧堋?.函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.8.若將函數(shù)的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點對稱 D.函數(shù)在上最大值是19.投擲一枚均勻硬幣和一枚均勻骰子各一次,記“硬幣正面向上”為事件A,“骰子向上的點數(shù)是3”為事件B,則事件A,B中至少有一件發(fā)生的概率是()A.512 B.12 C.710.橢圓的左、右焦點分別為,弦過,若的內(nèi)切圓的周長為,兩點的坐標分別為,,則()A. B. C. D.11.已知離散型隨機變量的分布列為表格所示,則隨機變量的均值為()0123A. B. C. D.12.若某幾何體的三視圖如圖所示,則這個幾何體的表面積是()A. B. C.19 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體的棱長為1,除面外,該正方體其余各面的中心分別為點E,F(xiàn),G,H,M(如圖),則四棱錐的體積為__________.14.如圖是棱長為的正方體的平面展開圖,則在這個正方體中,直線與所成角的余弦值為________.15.設(shè)實數(shù)滿足,則的最小值為______16.已知定義在上的函數(shù)滿足,且當(dāng)時,,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:分類積極參加班級工作不太主動參加班級工作總計學(xué)習(xí)積極性高18725學(xué)習(xí)積極性一般61925總計242650(1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?(2)試運用獨立性檢驗的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān),并說明理由.18.(12分)已知知x為正實數(shù),n為正偶數(shù),在的展開式中,(1)若前3項的系數(shù)依次成等差數(shù)列,求n的值及展開式中的有理項;(2)求奇數(shù)項的二項式系數(shù)的和與偶數(shù)項的二項式系數(shù)的和,并比較它們的大小.19.(12分)已知圓C經(jīng)過點,且圓心C在直線上,又直線與圓C相交于P,Q兩點.(1)求圓C的方程;(2)若,求實數(shù)的值.20.(12分)用0,1,2,3,4五個數(shù)字組成五位數(shù).(1)求沒有重復(fù)數(shù)字的五位數(shù)的個數(shù);(2)求沒有重復(fù)數(shù)字的五位偶數(shù)的個數(shù).21.(12分)求的二項展開式中的第5項的二項式系數(shù)和系數(shù).22.(10分)已知函數(shù),.()當(dāng)時,證明:為偶函數(shù);()若在上單調(diào)遞增,求實數(shù)的取值范圍;()若,求實數(shù)的取值范圍,使在上恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
根據(jù)空間中平面與平面平行的判定方法,逐一分析題目中的四個結(jié)論,即可得到答案.【題目詳解】平面α內(nèi)有無數(shù)條直線與平面β平行時,兩個平面可能平行也可能相交,故A不滿足條件;平面α內(nèi)的任何一條直線都與平面β平行,則能夠保證平面α內(nèi)有兩條相交的直線與平面β平行,故B滿足條件;直線a?α,直線b?β,且a∥β,b∥α,則兩個平面可能平行也可能相交,故C不滿足條件;直線a∥α,a∥β,且直線a不在α內(nèi),也不在β內(nèi),則α與β相交或平行,故D錯誤;故選B.【題目點撥】本題考查的知識點是空間中平面與平面平行的判定,熟練掌握面面平行的定義和判定方法是解答本題的關(guān)鍵.2、D【解題分析】
利用點到直線的距離公式求出|PF2|cos∠POF2=ac,由誘導(dǎo)公式得出cos∠POF1=-ac,在【題目詳解】如下圖所示,雙曲線C的右焦點F2(c,0),漸近線l1由點到直線的距離公式可得|PF由勾股定理得|OP|=|O在RtΔPOF2中,∠OPF在ΔPOF2中,|OP|=a,|PFcos∠PO由余弦定理得cos∠POF1即c=2a,因此,雙曲線C的離心率為e=c【題目點撥】本題考查雙曲線離心率的求解,屬于中等題。求離心率是圓錐曲線一類常考題,也是一個重點、難點問題,求解橢圓或雙曲線的離心率,一般有以下幾種方法:①直接求出a、c,可計算出離心率;②構(gòu)造a、c的齊次方程,求出離心率;③利用離心率的定義以及橢圓、雙曲線的定義來求解。3、D【解題分析】
根據(jù)互斥事件的加法公式,易判斷(1)的正誤;根據(jù)相互對立事件的概率和為1,結(jié)合相互獨立事件的概率滿足,可判斷(2)、(3)、(4)、(5)的正誤.【題目詳解】若為互斥事件,且,則,故(1)正確;若則由相互獨立事件乘法公式知為相互獨立事件,故(2)正確;若,則由對立事件概率計算公式和相互獨立事件乘法公式知為相互獨立事件,故(3)正確;若,當(dāng)為相互獨立事件時,故(4)錯誤;若則由對立事件概率計算公式和相互獨立事件乘法公式知為相互獨立事件,故(5)正確.故選D.【題目點撥】本題考查互斥事件、對立事件和獨立事件的概率,屬于基礎(chǔ)題.4、B【解題分析】
根據(jù)題意,由函數(shù)f(x)的解析式以及奇偶性分析可得f(x)的最小值與極大值,要使關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6個不同實數(shù)根,轉(zhuǎn)化為t2+at+b=0必有兩個根【題目詳解】根據(jù)題意,當(dāng)x≥0時,f(x)=1f(x)在(0,2)上遞增,在(2,+∞)上遞減,當(dāng)x=2時,函數(shù)當(dāng)x=0時,函數(shù)f(x)取得最小值0,又由函數(shù)為偶函數(shù),則f(x)在(-∞,-2)上遞增,在當(dāng)x=-2時,函數(shù)f(x)取得極大值14當(dāng)x=0時,函數(shù)f(x)取得最小值0,要使關(guān)于x的方程[f(x)]設(shè)t=f(x),則t2+at+b=0必有兩個根t1且必有t1=14,y=0<t2<14,y關(guān)于x的方程[f(x)]可得1又由-a=t則有-12<a<-【題目點撥】函數(shù)的性質(zhì)問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學(xué)習(xí)的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)y=f(x)-g(x)的零點?函數(shù)y=f(x)-g(x)在x軸的交點?方程f(x)-g(x)=0的根?函數(shù)y=f(x)與y=g(x)的交點.5、A【解題分析】
根據(jù)各個函數(shù)的奇偶性、函數(shù)值的符號,判斷函數(shù)的圖象特征,即可得到.【題目詳解】解:①為偶函數(shù),它的圖象關(guān)于軸對稱,故第一個圖象即是;
②為奇函數(shù),它的圖象關(guān)于原點對稱,它在上的值為正數(shù),
在上的值為負數(shù),故第三個圖象滿足;
③為奇函數(shù),當(dāng)時,,故第四個圖象滿足;
④,為非奇非偶函數(shù),故它的圖象沒有對稱性,故第二個圖象滿足,
故選A.【題目點撥】本題主要考查函數(shù)的圖象,函數(shù)的奇偶性、函數(shù)的值的符號,屬于中檔題.6、D【解題分析】四個函數(shù)圖象,分別對應(yīng)甲指數(shù)函數(shù),乙對數(shù)函數(shù),丙冪函數(shù),丁正比例函數(shù);而滿足①是正比例函數(shù);②是指數(shù)函數(shù);③是對數(shù)函數(shù);④是冪函數(shù),所以匹配方案是①—?、凇注邸尧堋xD。7、D【解題分析】分析:對求導(dǎo),令,即可求出函數(shù)的單調(diào)遞減區(qū)間.詳解:函數(shù)的定義域為,得到.故選D點睛:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬基礎(chǔ)題.8、A【解題分析】
根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【題目詳解】將橫坐標縮短到原來的得:當(dāng)時,在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯誤;當(dāng)時,,關(guān)于點對稱,錯誤;當(dāng)時,此時沒有最大值,錯誤.本題正確選項:【題目點撥】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).9、C【解題分析】試題分析:由題意可知,事件A與事件B是相互獨立的,而事件A、B中至少有一件發(fā)生的事件包含AB、AB、AB,又P(A)=12,考點:相互獨立事件概率的計算.10、A【解題分析】
設(shè)△ABF1的內(nèi)切圓的圓心為G.連接AG,BG,GF1.設(shè)內(nèi)切圓的半徑為r,則1πr=π,解得r=.可得==?|F1F1|,即可得出.【題目詳解】由橢圓=1,可得a=5,b=4,c==2.如圖所示,設(shè)△ABF1的內(nèi)切圓的圓心為G.連接AG,BG,GF1.設(shè)內(nèi)切圓的半徑為r,則1πr=π,解得r=.則==?|F1F1|,∴4a=|y1﹣y1|×1c,∴|y1﹣y1|==.故選C.【題目點撥】本題考查了橢圓的標準方程定義及其性質(zhì)、三角形內(nèi)切圓的性質(zhì)、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.11、C【解題分析】分析:利用離散型隨機變量分布列的性質(zhì)求得到,進而得到隨機變量的均值詳解:由已知得,解得:∴E(X)=故選:C點睛:本題考查離散型隨機變量的數(shù)學(xué)期望的求法,考查離散型隨機變量的基本性質(zhì),是基礎(chǔ)題.12、B【解題分析】
判斷幾何體的形狀幾何體是正方體與一個四棱柱的組合體,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【題目詳解】由題意可知幾何體是正方體與一個四棱柱的組合體,如圖:幾何體的表面積為:.故選B.【題目點撥】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由題意首先求解底面積,然后結(jié)合四棱錐的高即可求得四棱錐的體積.【題目詳解】由題意可得,底面四邊形為邊長為的正方形,其面積,頂點到底面四邊形的距離為,由四棱錐的體積公式可得:.【題目點撥】本題主要考查四棱錐的體積計算,空間想象能力等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.14、【解題分析】
結(jié)合正方體的平面展開圖,作出正方體的直觀圖,可知是正三角形,從而可知直線與所成角為,即可得到答案.【題目詳解】作出正方體的直觀圖,連接,,易證三角形是正三角形,而,故直線與所成角為,則直線與所成角的余弦值為.【題目點撥】本題考查了正方體的結(jié)構(gòu)特征,考查了異面直線的夾角的求法,屬于中檔題.15、-3【解題分析】
作出不等式組對應(yīng)的平面區(qū)域,設(shè),利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合確定的最小值,得到答案.【題目詳解】由題意,畫出約束條件所對應(yīng)的平面區(qū)域,如圖所示,設(shè),則,當(dāng)直線過點A時,直線在軸上的截距最大,此時目標函數(shù)取得最小值,由,解得,所以目標函數(shù)的最小值為.【題目點撥】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.16、18【解題分析】
由可判斷函數(shù)周期為2,所以,將代入即可求值【題目詳解】由,可得所以18【題目點撥】若函數(shù)滿足,則函數(shù)周期為,對于給出x的取值不在給定區(qū)間的,必須要根據(jù)周期性轉(zhuǎn)化為在對應(yīng)區(qū)間的x值,再代入表達式進行求解三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析.【解題分析】
(1)結(jié)合表格根據(jù)古典概型的概率公式計算概率即可;(2)計算的觀測值,對照表中數(shù)據(jù)得出統(tǒng)計結(jié)論.【題目詳解】(1)積極參加班級工作的學(xué)生有24人,總?cè)藬?shù)為50人,所以抽到積極參加班級工作的學(xué)生的概率,不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生有19人,所以抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生概率.(2)由列聯(lián)表知,的觀測值≈11.538,由11.538>10.828.所以在犯錯誤的概率不超過0.001的前提下認為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系.【題目點撥】本題考查了古典概型的應(yīng)用問題,也考查了兩個變量線性相關(guān)的應(yīng)用問題,準確計算的觀測值是解題的關(guān)鍵,是基礎(chǔ)題目.18、(1),有理項有三項,分別為:;(2)128,128,相等【解題分析】
(1)首先找出展開式的前3項,然后利用等差數(shù)列的性質(zhì)即可列出等式,求出n,于是求出通項,再得到有理項;(2)分別計算偶數(shù)項和奇數(shù)項的二項式系數(shù)和,比較大小即可.【題目詳解】(1)二項展開式的前三項的系數(shù)分別為:,而前三項構(gòu)成等差數(shù)列,故,解得或(舍去);所以,當(dāng)時,為有理項,又且,所以符合要求;故有理項有三項,分別為:;(2)奇數(shù)項的二項式系數(shù)和為:,偶數(shù)項的二項式系數(shù)和為:,故奇數(shù)項的二項式系數(shù)的和等于偶數(shù)項的二項式系數(shù)的和.【題目點撥】本題主要考查二項式定理的通項,二項式系數(shù)和,注意二項式系數(shù)和與系數(shù)和的區(qū)別,意在考查學(xué)生的計算能力和分析能力,難度中等.19、(1);(2)0【解題分析】(1)設(shè)圓心C(a,a),半徑為r.因為圓C經(jīng)過點A(-2,0),B(0,2),所以|AC|=|BC|=r,易得a=0,r=2,所以圓C的方程是x2+y2=4.(2)因為·=2×2×cos〈,〉=-2,且與的夾角為∠POQ,所以cos∠POQ=-,∠POQ=120°,所以圓心C到直線l:kx-y+1=0的距離d=1,又d=,所以k=0.20、(1)96(2)60【解題分析】分析:(1)首位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國屏障型單螺桿擠出機螺桿數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年大距離接近開關(guān)項目投資價值分析報告
- 2025至2030年雙孔雙風(fēng)機冷光源項目投資價值分析報告
- 2025至2030年便攜式導(dǎo)航儀項目投資價值分析報告
- 2025年萘丁美酮干混懸混劑項目可行性研究報告
- 2025年小型施肥器項目可行性研究報告
- 2025至2030年計劃合同管理系統(tǒng)項目投資價值分析報告
- 2025至2030年鹽酶素項目投資價值分析報告
- 醫(yī)用氣體終端項目績效評估報告
- 商業(yè)空間裝修設(shè)計合同
- 農(nóng)產(chǎn)品貯運與加工考試題(附答案)
- 學(xué)校財務(wù)年終工作總結(jié)4
- 2025年人民教育出版社有限公司招聘筆試參考題庫含答案解析
- 康復(fù)醫(yī)學(xué)治療技術(shù)(士)復(fù)習(xí)題及答案
- 鋼鐵是怎樣煉成的鋼鐵讀書筆記
- 《血管性血友病》課件
- 2025年汽車加氣站作業(yè)人員安全全國考試題庫(含答案)
- 2024年司法考試完整真題及答案
- 高三日語一輪復(fù)習(xí)日語助詞「に」和「を」的全部用法課件
- 2024年山東省高考政治試卷真題(含答案逐題解析)
- 煙葉復(fù)烤能源管理
評論
0/150
提交評論