福建省石獅七中學(xué)2023-2024學(xué)年數(shù)學(xué)九上期末綜合測(cè)試試題含解析_第1頁(yè)
福建省石獅七中學(xué)2023-2024學(xué)年數(shù)學(xué)九上期末綜合測(cè)試試題含解析_第2頁(yè)
福建省石獅七中學(xué)2023-2024學(xué)年數(shù)學(xué)九上期末綜合測(cè)試試題含解析_第3頁(yè)
福建省石獅七中學(xué)2023-2024學(xué)年數(shù)學(xué)九上期末綜合測(cè)試試題含解析_第4頁(yè)
福建省石獅七中學(xué)2023-2024學(xué)年數(shù)學(xué)九上期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省石獅七中學(xué)2023-2024學(xué)年數(shù)學(xué)九上期末綜合測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.點(diǎn)P(-6,1)在雙曲線上,則k的值為()A.-6 B.6 C. D.2.入冬以來氣溫變化異常,在校學(xué)生患流感人數(shù)明顯增多,若某校某日九年級(jí)8個(gè)班因病缺課人數(shù)分別為2、6、4、6、10、4、6、2,則這組數(shù)據(jù)的眾數(shù)是()A.5人 B.6人 C.4人 D.8人3.用配方法解方程-4x+3=0,下列配方正確的是()A.=1 B.=1 C.=7 D.=44.對(duì)于二次函數(shù),下列說法正確的是()A.當(dāng)x>0,y隨x的增大而增大B.當(dāng)x=2時(shí),y有最大值-3C.圖像的頂點(diǎn)坐標(biāo)為(-2,-7)D.圖像與x軸有兩個(gè)交點(diǎn)5.一元二次方程的正根的個(gè)數(shù)是()A. B. C. D.不確定6.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤7.已知P是△ABC的重心,且PE∥BC交AB于點(diǎn)E,BC=,則PE的長(zhǎng)為().A. B. C. D.8.“割圓術(shù)”是我國(guó)古代的一位偉大的數(shù)學(xué)家劉徽首創(chuàng)的,該割圓術(shù),就是通過不斷倍增圓內(nèi)接正多邊形的邊數(shù)來求出圓周率的一種方法,某同學(xué)在學(xué)習(xí)“割圓術(shù)”的過程中,畫了一個(gè)如圖所示的圓的內(nèi)接正十二邊形,若該圓的半徑為1,則這個(gè)圓的內(nèi)接正十二邊形的面積為().A.1 B.3 C.3.1 D.3.149.已知關(guān)于的一元二次方程的兩根為,,則一元二次方程的根為()A.0,4 B.-3,5 C.-2,4 D.-3,110.如圖,F(xiàn)是平行四邊形ABCD對(duì)角線BD上的點(diǎn),BF:FD=1:3,則BE:EC=()A. B. C. D.11.若關(guān)于x的一元二次方程kx2﹣2x﹣1=0有實(shí)數(shù)根,則k的取值范圍是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠012.二次函數(shù)圖像的頂點(diǎn)坐標(biāo)是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,∠MON=90°,直角三角形ABC斜邊的端點(diǎn)A,B別在射線OM,ON上滑動(dòng),BC=1,∠BAC=30°,連接OC.當(dāng)AB平分OC時(shí),OC的長(zhǎng)為______.14.如圖,在平面直角坐標(biāo)系中,已知A(1.5,0),D(4.5,0),△ABC與△DEF位似,原點(diǎn)O是位似中心.若DE=7.5,則AB=_____.15.如果拋物線與軸的一個(gè)交點(diǎn)的坐標(biāo)是,那么與軸的另一個(gè)交點(diǎn)的坐標(biāo)是___________.16.從地面垂直向上拋出一小球,小球的高度h(米)與小球運(yùn)動(dòng)時(shí)間t(秒)之間的函數(shù)關(guān)系式是h=12t﹣6t2,則小球運(yùn)動(dòng)到的最大高度為________米;17.如圖,一段拋物線記為,它與軸交于兩點(diǎn)、,將繞旋轉(zhuǎn)得到,交軸于,將繞旋轉(zhuǎn)得到,交軸于;如此進(jìn)行下去,直至得到,若點(diǎn)在第8段拋物線上,則等于__________18.若函數(shù)y=(k-2)是反比例函數(shù),則k=______.三、解答題(共78分)19.(8分)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如圖1,當(dāng)DE∥BC時(shí),有DBEC.(填“>”,“<”或“=”)(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.(3)拓展運(yùn)用:如圖3,P是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).20.(8分)如圖,在東西方向的海面線上,有,兩艘巡邏船和觀測(cè)點(diǎn)(,,在直線上),兩船同時(shí)收到漁船在海面停滯點(diǎn)發(fā)出的求救信號(hào).測(cè)得漁船分別在巡邏船,北偏西和北偏東方向,巡邏船和漁船相距120海里,漁船在觀測(cè)點(diǎn)北偏東方向.(說明:結(jié)果取整數(shù).參考數(shù)據(jù):,.)(1)求巡邏船與觀測(cè)點(diǎn)間的距離;(2)已知觀測(cè)點(diǎn)處45海里的范圍內(nèi)有暗礁.若巡邏船沿方向去營(yíng)救漁船有沒有觸礁的危險(xiǎn)?并說明理由.21.(8分)隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:(1)在扇統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為_____;根據(jù)這次統(tǒng)計(jì)數(shù)據(jù)了解到最受學(xué)生歡迎的溝通方式是______.(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對(duì)方聯(lián)系,用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.22.(10分)同時(shí)拋擲3枚硬幣做游戲,其中1元硬幣1枚,5角硬幣兩枚.(1)求3枚硬幣同時(shí)正面朝上的概率.(2)小張、小王約定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和為1.5元,則小張獲得1分;若面值和為1元,則小王得1分.誰先得到10分,誰獲勝,請(qǐng)問這個(gè)游戲是否公平?并說明理由.23.(10分)已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若該方程有一根為2,求a的值及方程的另一根;(2)當(dāng)a為何值時(shí),方程的根僅有唯一的值?求出此時(shí)a的值及方程的根.24.(10分)如圖1,內(nèi)接于,AD是直徑,的平分線交BD于H,交于點(diǎn)C,連接DC并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)E.(1)求證:;(2)若,求的值(3)如圖2,連接CB并延長(zhǎng),交DA的延長(zhǎng)線于點(diǎn)F,若,求的面積.25.(12分)實(shí)驗(yàn)探究:如圖,和是有公共頂點(diǎn)的等腰直角三角形,,交于、點(diǎn).(問題發(fā)現(xiàn))(1)把繞點(diǎn)旋轉(zhuǎn)到圖,、的關(guān)系是_________(“相等”或“不相等”),請(qǐng)直接寫出答案;(類比探究)(2)若,,把繞點(diǎn)旋轉(zhuǎn),當(dāng)時(shí),在圖中作出旋轉(zhuǎn)后的圖形,并求出此時(shí)的長(zhǎng);(拓展延伸)(3)在(2)的條件下,請(qǐng)直接寫出旋轉(zhuǎn)過程中線段的最小值為_________.26.如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E,連接BD.(1)求證:DE是⊙O的切線;(2)若BD=3,AD=4,則DE=.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可直接得到答案.【詳解】解:∵點(diǎn)P()在雙曲線上,∴;故選:A.【點(diǎn)睛】此題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.2、B【解析】找出這組數(shù)據(jù)出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)即為眾數(shù).【詳解】解:∵數(shù)據(jù)2、6、4、6、10、4、6、2,中數(shù)據(jù)6出現(xiàn)次數(shù)最多為3次,∴這組數(shù)據(jù)的眾數(shù)是6.故選:B.【點(diǎn)睛】本題考查眾數(shù)的概念,出現(xiàn)次數(shù)最多的數(shù)據(jù)為這組數(shù)的眾數(shù).3、A【解析】用配方法解方程-4x+3=0,移項(xiàng)得:-4x=-3,配方得:-4x+4=1,即=1.故選A.4、B【詳解】二次函數(shù),所以二次函數(shù)的開口向下,當(dāng)x<2,y隨x的增大而增大,選項(xiàng)A錯(cuò)誤;當(dāng)x=2時(shí),取得最大值,最大值為-3,選項(xiàng)B正確;頂點(diǎn)坐標(biāo)為(2,-3),選項(xiàng)C錯(cuò)誤;頂點(diǎn)坐標(biāo)為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點(diǎn),選項(xiàng)D錯(cuò)誤,故答案選B.考點(diǎn):二次函數(shù)的性質(zhì).5、B【分析】解法一:根據(jù)一元二次方程的解法直接求解判斷正根的個(gè)數(shù);解法二:先將一元二次方程化為一般式,再根據(jù)一元二次方程的根與系數(shù)的關(guān)系即可判斷正根的個(gè)數(shù).【詳解】解:解法一:化為一般式得,,∵a=1,b=3,c=?4,則,∴方程有兩個(gè)不相等的實(shí)數(shù)根,∴,即,,所以一元二次方程的正根的個(gè)數(shù)是1;解法二:化為一般式得,,,方程有兩個(gè)不相等的實(shí)數(shù)根,,則、必為一正一負(fù),所以一元二次方程的正根的個(gè)數(shù)是1;故選B.【點(diǎn)睛】本題考查了一元二次方程的解法,熟練掌握解一元二次方程的步驟是解題的關(guān)鍵;如果只判斷正根或負(fù)根的個(gè)數(shù),也可靈活運(yùn)用一元二次方程的根與系數(shù)的關(guān)系進(jìn)行判斷.6、D【解析】根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點(diǎn)定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補(bǔ)角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯(cuò)誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個(gè)三角形相似,利用相似三角形對(duì)應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長(zhǎng)為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對(duì)應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點(diǎn)M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,

∵E、F分別為邊AB,BC的中點(diǎn),

∴AE=BF=BC,

在△ABF和△DAE中,,

∴△ABF≌△DAE(SAS),

∴∠BAF=∠ADE,

∵∠BAF+∠DAF=∠BAD=90°,

∴∠ADE+∠DAF=∠BAD=90°,

∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,

∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;

∵DE是△ABD的中線,

∴∠ADE≠∠EDB,

∴∠BAF≠∠EDB,故②錯(cuò)誤;

∵∠BAD=90°,AM⊥DE,

∴△AED∽△MAD∽△MEA,

∴∴AM=2EM,MD=2AM,

∴MD=2AM=4EM,故④正確;

設(shè)正方形ABCD的邊長(zhǎng)為2a,則BF=a,

在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,

∴△AME∽△ABF,

∴,

即,

解得AM=

∴MF=AF-AM=,

∴AM=MF,故⑤正確;

如圖,過點(diǎn)M作MN⊥AB于N,

則即解得MN=,AN=,

∴NB=AB-AN=2a-=,

根據(jù)勾股定理,BM=過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,

則OK=a-=,MK=-a=,

在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,

∵BM2+MO2=

∴BM2+MO2=BO2,

∴△BMO是直角三角形,∠BMO=90°,故③正確;

綜上所述,正確的結(jié)論有①③④⑤共4個(gè).故選:D【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強(qiáng),難度較大,仔細(xì)分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.7、A【分析】如圖,連接AP,延長(zhǎng)AP交BC于D,根據(jù)重心的性質(zhì)可得點(diǎn)D為BC中點(diǎn),AP=2PD,由PE//BC可得△AEP∽△ABD,根據(jù)相似三角形的性質(zhì)即可求出PE的長(zhǎng).【詳解】如圖,連接AP,延長(zhǎng)AP交BC于D,∵點(diǎn)P為△ABC的重心,BC=,∴BD=BC=,AP=2PD,∴,∵PE//BC,∴△AEP∽△ABD,∴,∴PE===.故選:A.【點(diǎn)睛】本題考查三角形重心的性質(zhì)及相似三角形的判定與性質(zhì),三角形的重心是三角形三條中線的交點(diǎn),重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1;正確作出輔助線,構(gòu)造相似三角形是解題關(guān)鍵.8、B【分析】先求出,進(jìn)而得出,根據(jù)這個(gè)圓的內(nèi)接正十二邊形的面積為進(jìn)行求解.【詳解】∵是圓的內(nèi)接正十二邊形,∴,∵,∴,∴這個(gè)圓的內(nèi)接正十二邊形的面積為,故選B.【點(diǎn)睛】本題考查正十二邊形的面積計(jì)算,先求出是解題的關(guān)鍵.9、B【分析】先將,代入一元二次方程得出與的關(guān)系,再將用含的式子表示并代入一元二次方程求解即得.【詳解】∵關(guān)于的一元二次方程的兩根為,∴或∴整理方程即得:∴將代入化簡(jiǎn)即得:解得:,故選:B.【點(diǎn)睛】本題考查了含參數(shù)的一元二次方程求解,解題關(guān)鍵是根據(jù)已知條件找出參數(shù)關(guān)系,并代入要求的方程化簡(jiǎn)為不含參數(shù)的一元二次方程.10、A【解析】試題解析:是平行四邊形,故選A.11、A【分析】根據(jù)一元二次方程的定義和判別式的意義得到k≠1且△=22-4k×(-1)≥1,然后求出兩個(gè)不等式的公共部分即可.【詳解】根據(jù)題意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故選A.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2-4ac:當(dāng)△>1,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=1,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<1,方程沒有實(shí)數(shù)根.也考查了一元二次方程的定義.12、D【分析】先把二次函數(shù)進(jìn)行配方得到拋物線的頂點(diǎn)式,根據(jù)二次函數(shù)的性質(zhì)即可得到其頂點(diǎn)坐標(biāo).【詳解】∵,∴二次函數(shù)的頂點(diǎn)坐標(biāo)為.

故選:D.【點(diǎn)睛】本題考查二次函數(shù)的頂點(diǎn)坐標(biāo),配方是解決問題的關(guān)鍵,屬基礎(chǔ)題.二、填空題(每題4分,共24分)13、.【分析】取AB中點(diǎn)F,連接FC、FO,根據(jù)斜邊上的中線等于斜邊的一半及等腰三角形三線合一的性質(zhì)得到AB垂直平分OC,利用特殊角的三角函數(shù)即可求得答案.【詳解】如圖,設(shè)AB交OC于E,取AB中點(diǎn)F,連接FC、FO,∵∠MON=∠ACB=90°∴FC=FO(斜邊上的中線等于斜邊的一半),又AB平分OC,∴CE=EO,ABOC(三線合一)在中,BC=1,∠ABC=90,∴,∴∴故答案為:【點(diǎn)睛】本題考查了直角三角形的性質(zhì),斜邊上的中線等于斜邊的一半,等腰三角形的性質(zhì),綜合性較強(qiáng),但難度不大,構(gòu)造合適的輔助線是解題的關(guān)鍵.14、2.1.【分析】利用以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或-k得到位似比為,然后根據(jù)相似的性質(zhì)計(jì)算AB的長(zhǎng).【詳解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC與△DEF位似,原點(diǎn)O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案為2.1.【點(diǎn)睛】本題考查了位似變換:在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或-k.15、【分析】根據(jù)拋物線y=ax2+2ax+c,可以得到該拋物線的對(duì)稱軸,然后根據(jù)二次函數(shù)圖象具有對(duì)稱性和拋物線y=ax2+2ax+c與x軸的一個(gè)交點(diǎn)的坐標(biāo)是(1,0),可以得到該拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo).【詳解】∵拋物線y=ax2+2ax+c=a(x+1)2-a+c,

∴該拋物線的對(duì)稱軸是直線x=-1,

∵拋物線y=ax2+2ax+c與x軸的一個(gè)交點(diǎn)的坐標(biāo)是(1,0),

∴該拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(-3,0),

故答案為:(-3,0).【點(diǎn)睛】此題考查二次函數(shù)的圖形及其性質(zhì),解題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.16、6【分析】現(xiàn)將函數(shù)解析式配方得,即可得到答案.【詳解】,∴當(dāng)t=1時(shí),h有最大值6.故答案為:6.【點(diǎn)睛】此題考查最值問題,確定最值時(shí)需現(xiàn)將函數(shù)解析式配方為頂點(diǎn)式,再根據(jù)開口方向確定最值.17、【分析】求出拋物線與x軸的交點(diǎn)坐標(biāo),觀察圖形可知第奇數(shù)號(hào)拋物線都在x軸上方、第偶數(shù)號(hào)拋物線都在x軸下方,再根據(jù)向右平移橫坐標(biāo)相加表示出拋物線的解析式,然后把點(diǎn)P的橫坐標(biāo)代入計(jì)算即可.【詳解】拋物線與x軸的交點(diǎn)為(0,0)、(2,0),將繞旋轉(zhuǎn)180°得到,則的解析式為,同理可得的解析式為,的解析式為的解析式為的解析式為的解析式為的解析式為∵點(diǎn)在拋物線上,∴故答案為【點(diǎn)睛】本題考查的是二次函數(shù)的圖像性質(zhì)與平移,能夠根據(jù)題意確定出的解析式是解題的關(guān)鍵.18、-1【解析】根據(jù)反比例函數(shù)的定義列出方程,解出k的值即可.【詳解】解:若函數(shù)y=(k-1)是反比例函數(shù),則解得k=﹣1,故答案為﹣1.三、解答題(共78分)19、(1)=;(2)成立,證明見解析;(3)135°.【分析】試題(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)由旋轉(zhuǎn)構(gòu)造出△CPB≌△CEA,再用勾股定理計(jì)算出PE,然后用勾股定理逆定理判斷出△PEA是直角三角形,再簡(jiǎn)單計(jì)算即可.【詳解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為=,(2)成立.證明:由①易知AD=AE,∴由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如圖,將△CPB繞點(diǎn)C旋轉(zhuǎn)90°得△CEA,連接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【點(diǎn)睛】考點(diǎn):幾何變換綜合題;平行線平行線分線段成比例.20、(1)76海里;(2)沒有觸礁的危險(xiǎn),理由見解析【分析】(1)作.根據(jù)直角三角形性質(zhì)求AE,CE,AB,再證.所以.(2)作.證BF=DF,由BF2+DF2=BD2可求解.【詳解】解:(1)作.因?yàn)闈O船分別在巡邏船,北偏西和北偏東方向,所以∠CAE=60°,∠CBE=45°所以∠ACE=30°,∠ACB=180°-60°-45°=75°;所以(海里),(海里).所以.因?yàn)闈O船在觀測(cè)點(diǎn)北偏東方向.所以∠CDE=75?所以∠CDE=∠ACB,所以.所以.即.解得,.∴海里.(2)沒有觸礁的危險(xiǎn).作.因?yàn)椤螩BD=45°所以BF=DF所以BF2+DF2=BD2即DF2+DF2=762可求得.∵,∴沒有觸礁的危險(xiǎn).【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中整理出直角三角形并選擇合適的邊角關(guān)系解答.21、(1)108°,微信;(2)見解析;(3)【分析】(1)根據(jù)喜歡電話溝通的人數(shù)與百分比即可求出共抽查人數(shù),求出使用QQ的百分比即可求出QQ的扇形圓心角度數(shù),根據(jù)總?cè)藬?shù)及所占百分比即可求出使用短信的人數(shù),總?cè)藬?shù)減去除微信之外的四種方式的人數(shù)即可得到使用微信的人數(shù).

(2)根據(jù)短信與微信的人數(shù)即可補(bǔ)全條形統(tǒng)計(jì)圖.(3)列出樹狀圖分別求出所有情況以及甲、乙兩名同學(xué)恰好選中同一種溝通方式的情況后,利用概率公式即可求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.【詳解】解:(1)喜歡用電話溝通的人數(shù)為20,所占百分比為20%,

∴此次共抽查了:20÷20%=100人

喜歡用QQ溝通所占比例為:,∴“QQ”的扇形圓心角的度數(shù)為:360°×=108°,喜歡用短信的人數(shù)為:100×5%=5(人)

喜歡用微信的人數(shù)為:100?20?5?30?5=40(人),∴最受學(xué)生歡迎的溝通方式是:微信,故答案為:108°,微信;(2)補(bǔ)全條形圖如下:(3)列出樹狀圖,如圖所示所有情況共有9種情況,其中兩人恰好選中同一種溝通方式共有3種情況,

甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率為:.【點(diǎn)睛】本題考查統(tǒng)計(jì)與概率,解題的關(guān)鍵是熟練運(yùn)用統(tǒng)計(jì)與概率的相關(guān)公式,本題屬于中等題型.22、(1);(2)公平,見解析【分析】(1)用列表法或樹狀圖法表示出所有可能出現(xiàn)的結(jié)果,進(jìn)而求出3枚硬幣同時(shí)正面朝上的概率.(2)求出小張獲得1分;小王得1分的概率,再判斷游戲的公平性.【詳解】解:(1)用樹狀圖表示所有可能出現(xiàn)的情況如下:∴P(3枚硬幣同時(shí)正面朝上)=;(2)公平,所有面值出現(xiàn)的情況如圖所示:∵P(小張獲得1分),P(小王得1分),∴P(小張獲得1分)=P(小王得1分),因此對(duì)于他們來說是公平的.【點(diǎn)睛】本題考查了樹狀圖和概率計(jì)算公式,解決本題的關(guān)鍵是正確理解題意,熟練掌握樹狀圖的畫法和概率的計(jì)算公式.23、(3)a=,方程的另一根為;(2)答案見解析.【解析】(3)把x=2代入方程,求出a的值,再把a(bǔ)代入原方程,進(jìn)一步解方程即可;(2)分兩種情況探討:①當(dāng)a=3時(shí),為一元一次方程;②當(dāng)a≠3時(shí),利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當(dāng)a=3時(shí),方程為2x=3,解得:x=3.②當(dāng)a≠3時(shí),由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當(dāng)a=2時(shí),原方程為:x2+2x+3=3,解得:x3=x2=-3;當(dāng)a=3時(shí),原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當(dāng)a=3,3,2時(shí),方程僅有一個(gè)根,分別為3,3,-3.考點(diǎn):3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應(yīng)用.24、(1)見解析;(2);(3)【分析】(1)根據(jù)直徑所對(duì)的圓周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;(2)連接OC交BD于G,設(shè),根據(jù)垂徑定理的推論可得出OC垂直平分BD,進(jìn)而推出OG為中位線,再判定,利用對(duì)應(yīng)邊成比例即可求出的值;(3)連接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,設(shè),則,再判定,利用對(duì)應(yīng)邊成比例求出m的值,進(jìn)而得到AB和AD的長(zhǎng),再用勾股定理求出BD,可求出△BED的面積,由C為DE的中點(diǎn)可得△BEC為△BED面積的一半,即可得出答案.【詳解】(1)證明:∵AD是的直徑∵AC平分在△ACD和△ACE中,∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC∴△ACD≌△ACE(ASA)(2)如圖,連接OC交BD于G,,設(shè),則,OC=AD=∴OC垂直平分BD又∵O為AD的中點(diǎn)∴OG為△ABD的中位線∴OC∥AB,OG=,CG=(3)如圖,連接OC交BD于G,由(2)可知:OC∥AB,OG=AB∴∠BHA=∠GCH在△BHA和△GHC中,∵∠BHA=∠GCH,AH=CH,∠BHA=∠GHC∴設(shè),則又,∴,∵AD是的直徑又【點(diǎn)睛】本題考查了圓周角定理,垂徑定理的推論,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),以及勾股定理,是一道圓的綜合問題,解題的關(guān)鍵是連接OC利用垂徑定理得到中位線.25、(1)相等;(2)或;(3)1.【分析】(1)依據(jù)△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進(jìn)而得到△ABD≌△ACE,可得出BD=CE;

(2)分兩種情況:依據(jù)∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到,進(jìn)而得到PD=;依據(jù)∠ABD=∠PBE,∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論