初等函數(shù)的圖像特征與變化規(guī)律_第1頁(yè)
初等函數(shù)的圖像特征與變化規(guī)律_第2頁(yè)
初等函數(shù)的圖像特征與變化規(guī)律_第3頁(yè)
初等函數(shù)的圖像特征與變化規(guī)律_第4頁(yè)
初等函數(shù)的圖像特征與變化規(guī)律_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

初等函數(shù)的圖像特征與變化規(guī)律匯報(bào)人:XX2024-01-26Contents目錄引言一次函數(shù)的圖像特征與變化規(guī)律二次函數(shù)的圖像特征與變化規(guī)律指數(shù)函數(shù)的圖像特征與變化規(guī)律對(duì)數(shù)函數(shù)的圖像特征與變化規(guī)律冪函數(shù)的圖像特征與變化規(guī)律引言010102函數(shù)的定義與性質(zhì)函數(shù)具有單調(diào)性、奇偶性、周期性等基本性質(zhì),這些性質(zhì)決定了函數(shù)的圖像特征和變化規(guī)律。函數(shù)是一種特殊的對(duì)應(yīng)關(guān)系,它將定義域中的每一個(gè)自變量值唯一地對(duì)應(yīng)到值域中的一個(gè)因變量值。初等函數(shù)是由基本初等函數(shù)經(jīng)過(guò)有限次的四則運(yùn)算和復(fù)合運(yùn)算得到的函數(shù)?;境醯群瘮?shù)包括冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)和反三角函數(shù)等。初等函數(shù)可以按照其構(gòu)成方式分為代數(shù)函數(shù)、超越函數(shù)和混合函數(shù)等類型。其中,代數(shù)函數(shù)由多項(xiàng)式、分式等代數(shù)運(yùn)算構(gòu)成,超越函數(shù)則包含指數(shù)、對(duì)數(shù)、三角等運(yùn)算。初等函數(shù)的概念與分類一次函數(shù)的圖像特征與變化規(guī)律02一次函數(shù)的一般形式為$y=kx+b$,其中$k$和$b$為常數(shù),且$kneq0$。當(dāng)$k>0$時(shí),函數(shù)為增函數(shù);當(dāng)$k<0$時(shí),函數(shù)為減函數(shù)。一次函數(shù)的圖像是一條直線,斜率為$k$,截距為$b$。一次函數(shù)的定義與性質(zhì)直線與y軸的交點(diǎn)為$(0,b)$,即截距$b$。直線可以通過(guò)兩點(diǎn)確定,其中一點(diǎn)為截距點(diǎn),另一點(diǎn)可通過(guò)代入一組$x,y$值求得。直線斜率的正負(fù)決定了函數(shù)的增減性。一次函數(shù)的圖像特征當(dāng)$x$增大時(shí),若$k>0$,則$y$隨之增大;若$k<0$,則$y$隨之減小。一次函數(shù)的增減性與斜率的正負(fù)一致。通過(guò)調(diào)整斜率$k$和截距$b$的值,可以改變一次函數(shù)的圖像和性質(zhì)。一次函數(shù)的變化規(guī)律二次函數(shù)的圖像特征與變化規(guī)律03二次函數(shù)是形如$f(x)=ax^2+bx+c$(其中$aneq0$)的函數(shù)。定義對(duì)稱性頂點(diǎn)二次函數(shù)的圖像關(guān)于直線$x=-frac{2a}$對(duì)稱。二次函數(shù)的頂點(diǎn)坐標(biāo)為$left(-frac{2a},fleft(-frac{2a}right)right)$。030201二次函數(shù)的定義與性質(zhì)頂點(diǎn)位置頂點(diǎn)的$y$坐標(biāo)值決定了拋物線相對(duì)于$x$軸的位置。當(dāng)頂點(diǎn)在$x$軸上方時(shí),拋物線在整個(gè)定義域內(nèi)都位于$x$軸上方;當(dāng)頂點(diǎn)在$x$軸下方時(shí),拋物線在部分定義域內(nèi)位于$x$軸下方。開(kāi)口方向當(dāng)$a>0$時(shí),拋物線開(kāi)口向上;當(dāng)$a<0$時(shí),拋物線開(kāi)口向下。與坐標(biāo)軸的交點(diǎn)拋物線與$y$軸的交點(diǎn)為$(0,c)$,與$x$軸的交點(diǎn)由方程$ax^2+bx+c=0$的根確定。二次函數(shù)的圖像特征平移變換當(dāng)二次函數(shù)的形式為$f(x)=a(x-h)^2+k$時(shí),其圖像相對(duì)于標(biāo)準(zhǔn)形式(即頂點(diǎn)在原點(diǎn))的拋物線沿$x$軸平移了$h$個(gè)單位,沿$y$軸平移了$k$個(gè)單位。伸縮變換當(dāng)二次函數(shù)的形式為$f(x)=a(bx)^2+c$(其中$bneq1$)時(shí),其圖像相對(duì)于標(biāo)準(zhǔn)形式的拋物線在橫向上進(jìn)行了伸縮變換,伸縮因子為$frac{1}$。翻轉(zhuǎn)變換當(dāng)二次函數(shù)的形式為$f(x)=-ax^2+bx+c$時(shí),其圖像相對(duì)于標(biāo)準(zhǔn)形式的拋物線進(jìn)行了上下翻轉(zhuǎn)。二次函數(shù)的變化規(guī)律指數(shù)函數(shù)的圖像特征與變化規(guī)律04指數(shù)函數(shù)是形如y=a^x(a>0,a≠1)的函數(shù),其中a是底數(shù),x是指數(shù)。定義指數(shù)函數(shù)的值域?yàn)?0,+∞),且當(dāng)a>1時(shí),函數(shù)單調(diào)遞增;當(dāng)0<a<1時(shí),函數(shù)單調(diào)遞減。性質(zhì)指數(shù)函數(shù)的定義與性質(zhì)

指數(shù)函數(shù)的圖像特征圖像形狀指數(shù)函數(shù)的圖像是一條從y軸出發(fā),向右上方或右下方無(wú)限延伸的曲線。關(guān)鍵點(diǎn)指數(shù)函數(shù)的圖像經(jīng)過(guò)點(diǎn)(0,1),且當(dāng)x=1時(shí),y=a。對(duì)稱性指數(shù)函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,即如果(x,y)在圖像上,則(-x,1/y)也在圖像上。當(dāng)?shù)讛?shù)a從0逐漸增大到+∞時(shí),指數(shù)函數(shù)的圖像從y軸逐漸向右上方延伸,且增長(zhǎng)速度越來(lái)越快。底數(shù)變化當(dāng)指數(shù)x從-∞逐漸增大到+∞時(shí),指數(shù)函數(shù)的值從0逐漸增大到+∞,且增長(zhǎng)速度逐漸加快。指數(shù)變化指數(shù)函數(shù)沒(méi)有周期性,即其圖像不會(huì)重復(fù)出現(xiàn)相同的形狀。周期性指數(shù)函數(shù)的變化規(guī)律對(duì)數(shù)函數(shù)的圖像特征與變化規(guī)律05定義對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),表示為$y=log_b(x)$,其中$b>0$且$bneq1$。性質(zhì)對(duì)數(shù)函數(shù)具有一些基本性質(zhì),如$log_b(1)=0$,$log_b(b)=1$,$log_b(xy)=log_b(x)+log_b(y)$,$log_bleft(frac{x}{y}right)=log_b(x)-log_b(y)$等。對(duì)數(shù)函數(shù)的定義與性質(zhì)圖像形狀01對(duì)數(shù)函數(shù)的圖像是一條曲線,其形狀取決于底數(shù)$b$。當(dāng)$0<b<1$時(shí),圖像是減函數(shù);當(dāng)$b>1$時(shí),圖像是增函數(shù)。漸近線02對(duì)數(shù)函數(shù)的圖像有一條水平漸近線,即$y=0$。當(dāng)$x$趨近于正無(wú)窮時(shí),函數(shù)值趨近于0。交點(diǎn)03對(duì)數(shù)函數(shù)圖像與坐標(biāo)軸的交點(diǎn)取決于底數(shù)$b$。當(dāng)$0<b<1$時(shí),圖像與$x$軸交于點(diǎn)$(1,0)$;當(dāng)$b>1$時(shí),圖像與$y$軸交于點(diǎn)$(0,0)$。對(duì)數(shù)函數(shù)的圖像特征對(duì)數(shù)函數(shù)在其定義域內(nèi)具有單調(diào)性。當(dāng)$0<b<1$時(shí),函數(shù)在$(0,+infty)$上單調(diào)遞減;當(dāng)$b>1$時(shí),函數(shù)在$(0,+infty)$上單調(diào)遞增。單調(diào)性對(duì)數(shù)函數(shù)的值域?yàn)槿w實(shí)數(shù)集$mathbf{R}$。值域?qū)?shù)函數(shù)不具有對(duì)稱性。但是,對(duì)于底數(shù)互為倒數(shù)的兩個(gè)對(duì)數(shù)函數(shù),如$log_b(x)$和$log_{frac{1}}(x)$,它們的圖像關(guān)于直線$y=x$對(duì)稱。對(duì)稱性對(duì)數(shù)函數(shù)的變化規(guī)律冪函數(shù)的圖像特征與變化規(guī)律06冪函數(shù)是形如f(x)=x^a(a為常數(shù))的函數(shù)。冪函數(shù)的定義域因a的取值不同而不同,當(dāng)a為負(fù)數(shù)時(shí),定義域?yàn)槌ナ箈^a無(wú)意義的點(diǎn)之外的實(shí)數(shù)集;當(dāng)a為非負(fù)整數(shù)時(shí),定義域?yàn)槿w實(shí)數(shù)。冪函數(shù)的定義與性質(zhì)性質(zhì)定義當(dāng)a>0時(shí),冪函數(shù)的圖像經(jīng)過(guò)原點(diǎn),且隨著x的增大而增大,圖像在第一象限內(nèi)向上凸。當(dāng)a<0時(shí),冪函數(shù)的圖像也經(jīng)過(guò)原點(diǎn),但隨著x的增大而減小,圖像在第一象限內(nèi)向下凹。當(dāng)a=1時(shí),冪函數(shù)變?yōu)榫€性函數(shù),圖像為一條直線。當(dāng)a為分?jǐn)?shù)時(shí),冪函數(shù)的圖像可能呈現(xiàn)出更為復(fù)雜的形態(tài),如彎曲程度不同的曲線等。0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論