




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年江蘇省南京市燕子磯中學(xué)高考沖刺模擬數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]2.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.3.若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為()A. B.2 C. D.14.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.的展開式中的系數(shù)為()A. B. C. D.6.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.7.已知雙曲線C:=1(a>0,b>0)的右焦點(diǎn)為F,過原點(diǎn)O作斜率為的直線交C的右支于點(diǎn)A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+18.若集合,,則下列結(jié)論正確的是()A. B. C. D.9.已知雙曲線(,),以點(diǎn)()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A. B. C. D.10.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④11.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圖(1)是第七屆國際數(shù)學(xué)教育大會(huì)(ICME-7)的會(huì)徽?qǐng)D案,它是由一串直角三角形演化而成的(如圖(2)),其中,則的值是______.14.已知是夾角為的兩個(gè)單位向量,若,,則與的夾角為______.15.已知數(shù)列的前項(xiàng)和公式為,則數(shù)列的通項(xiàng)公式為___.16.展開式中項(xiàng)系數(shù)為160,則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知都是大于零的實(shí)數(shù).(1)證明;(2)若,證明.18.(12分)已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.19.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開展愛國衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,,,,,的大小關(guān)系.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實(shí)數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點(diǎn),線段的中點(diǎn)為.(1)求線段長的最小值;(2)求點(diǎn)的軌跡方程.21.(12分)在直角坐標(biāo)系中,直線l過點(diǎn),且傾斜角為,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.求直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程,并判斷曲線C是什么曲線;設(shè)直線l與曲線C相交與M,N兩點(diǎn),當(dāng),求的值.22.(10分)某中學(xué)準(zhǔn)備組建“文科”興趣特長社團(tuán),由課外活動(dòng)小組對(duì)高一學(xué)生文科、理科進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問卷成績(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.理科方向文科方向總計(jì)男110女50總計(jì)(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.2、C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.3、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及簡單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.4、C【解析】
根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.5、C【解析】由題意,根據(jù)二項(xiàng)式定理展開式的通項(xiàng)公式,得展開式的通項(xiàng)為,則展開式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是??贾R(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問題可得解.6、D【解析】,則故選D.7、B【解析】
以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點(diǎn),則,整理計(jì)算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的求解,考查學(xué)生的計(jì)算能力,是中檔題.8、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點(diǎn)睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.9、A【解析】
求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點(diǎn),且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因?yàn)?,所以圓心到的距離為:,即,因?yàn)椋越獾茫蔬xA.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題.對(duì)于離心率求解問題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個(gè)思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.10、D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.11、C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.12、B【解析】
模擬程序框圖運(yùn)行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B【點(diǎn)睛】本題主要考查程序框圖,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出向量和夾角的余弦值,再由公式即得.【詳解】如圖,過點(diǎn)作的平行線交于點(diǎn),那么向量和夾角為,,,,,且是直角三角形,,同理得,,.故答案為:【點(diǎn)睛】本題主要考查平面向量數(shù)量積,解題關(guān)鍵是找到向量和的夾角.14、【解析】
依題意可得,再根據(jù)求模,求數(shù)量積,最后根據(jù)夾角公式計(jì)算可得;【詳解】解:因?yàn)槭菉A角為的兩個(gè)單位向量所以,又,所以,,所以,因?yàn)樗?;故答案為:【點(diǎn)睛】本題考查平面向量的數(shù)量積的運(yùn)算律,以及夾角的計(jì)算,屬于基礎(chǔ)題.15、【解析】
由題意,根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,即可求得數(shù)列的通項(xiàng)公式.【詳解】由題意,可知當(dāng)時(shí),;當(dāng)時(shí),.又因?yàn)椴粷M足,所以.【點(diǎn)睛】本題主要考查了利用數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系求解數(shù)列的通項(xiàng)公式,其中解答中熟記數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、-2【解析】
表示該二項(xiàng)式的展開式的第r+1項(xiàng),令其指數(shù)為3,再代回原表達(dá)式構(gòu)建方程求得答案.【詳解】該二項(xiàng)式的展開式的第r+1項(xiàng)為令,所以,則故答案為:【點(diǎn)睛】本題考查由二項(xiàng)式指定項(xiàng)的系數(shù)求參數(shù),屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析.(2)答案見解析【解析】
(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.18、(1);(2)見解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設(shè)軸上存在點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形,設(shè),,線段的中點(diǎn)為,根據(jù)韋達(dá)定理求出點(diǎn)的坐標(biāo),再根據(jù),,即可求出的值,可得點(diǎn)的坐標(biāo).【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設(shè)軸上存在點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形設(shè),,線段的中點(diǎn)為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當(dāng)時(shí),點(diǎn)滿足題意;當(dāng)時(shí),點(diǎn)滿足題意故軸上存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形【點(diǎn)睛】本題考查了橢圓的方程,直線和橢圓的位置關(guān)系,斜率公式,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題.19、(1)(2)(3)【解析】
(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“,則(E),求出即可;(3)根據(jù)題意,寫出即可.【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習(xí)慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據(jù)題意,可知(A),(B),(C),設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“則.所以該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣至少具備2個(gè)良好習(xí)慣的概率為0.766.(3).【點(diǎn)睛】本題考查了古典概型求概率,獨(dú)立性事件,互斥性事件求概率等,考查運(yùn)算能力和事件應(yīng)用能力,中檔題.20、(1)(2)【解析】
(1)將曲線的方程化成直角坐標(biāo)方程為,當(dāng)時(shí),線段取得最小值,利用幾何法求弦長即可.(2)當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),由利用向量的數(shù)量積等于可求解,最后驗(yàn)證當(dāng)點(diǎn)與點(diǎn)重合時(shí)也滿足.【詳解】解曲線的方程化成直角坐標(biāo)方程為即圓心,半徑,曲線為過定點(diǎn)的直線,易
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京農(nóng)業(yè)大學(xué)《思想政治教育研究方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 西安城市建設(shè)職業(yè)學(xué)院《動(dòng)畫素描》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川西南航空職業(yè)學(xué)院《設(shè)計(jì)基礎(chǔ)形態(tài)構(gòu)成》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江音樂學(xué)院《園林法規(guī)》2023-2024學(xué)年第二學(xué)期期末試卷
- 甘肅民族師范學(xué)院《電力拖動(dòng)自動(dòng)控制系統(tǒng)》2023-2024學(xué)年第二學(xué)期期末試卷
- 黑龍江護(hù)理高等??茖W(xué)校《中醫(yī)經(jīng)典選讀一》2023-2024學(xué)年第二學(xué)期期末試卷
- 成都大學(xué)《資賦優(yōu)異教育概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 揚(yáng)州工業(yè)職業(yè)技術(shù)學(xué)院《食品生物技術(shù)實(shí)驗(yàn)指導(dǎo)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣西城市職業(yè)大學(xué)《教師實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 湘中幼兒師范高等專科學(xué)?!镀胀ɑ瘜W(xué)I》2023-2024學(xué)年第二學(xué)期期末試卷
- 產(chǎn)品試產(chǎn)流程
- 舞臺(tái)機(jī)械基礎(chǔ)知識(shí)培訓(xùn)
- 人教版數(shù)學(xué)八年級(jí)下冊(cè) 第16章 二次根式 單元測試(含答案)
- 中學(xué)班主任培訓(xùn)內(nèi)容
- DB51T 1511-2022建設(shè)項(xiàng)目對(duì)自然保護(hù)區(qū)自然資源、自然生態(tài)
- 2024年湘教版初中地理一輪復(fù)習(xí)專題三 天氣與氣候
- 四級(jí)人工智能訓(xùn)練師(中級(jí))職業(yè)技能等級(jí)認(rèn)定考試題及答案
- 運(yùn)用HFMEA品管工具優(yōu)化臨床安全輸血流程醫(yī)院品質(zhì)管理獲獎(jiǎng)案例(護(hù)理部聯(lián)合臨床輸血科信息處)
- 《商務(wù)溝通-策略、方法與案例》課件 第八章 求職溝通
- 法律思維及案例培訓(xùn)
- Meta分析高分文獻(xiàn)匯報(bào)課件模板
評(píng)論
0/150
提交評(píng)論