2023-2024學年青海省海北市重點中學高三第三次測評數(shù)學試卷含解析_第1頁
2023-2024學年青海省海北市重點中學高三第三次測評數(shù)學試卷含解析_第2頁
2023-2024學年青海省海北市重點中學高三第三次測評數(shù)學試卷含解析_第3頁
2023-2024學年青海省海北市重點中學高三第三次測評數(shù)學試卷含解析_第4頁
2023-2024學年青海省海北市重點中學高三第三次測評數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年青海省海北市重點中學高三第三次測評數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則的虛部是A.3 B. C. D.2.趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.3.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}4.的展開式中,含項的系數(shù)為()A. B. C. D.5.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要6.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.7.復數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.8.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.9.已知復數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.10.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.611.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.12.設不等式組,表示的平面區(qū)域為,在區(qū)域內(nèi)任取一點,則點的坐標滿足不等式的概率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則展開式中的系數(shù)為__14.若函數(shù)(R,)滿足,且的最小值等于,則ω的值為___________.15.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,,,若,則的取值范圍是_______.16.角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經(jīng)過點,則的值是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.18.(12分)已知函數(shù).(1)當時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當時,若方程有兩個不相等的實數(shù)根,求證:.19.(12分)設函數(shù).(1)若,求函數(shù)的值域;(2)設為的三個內(nèi)角,若,求的值;20.(12分)設函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.21.(12分)已知等差數(shù)列{an}的前n項和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前22.(10分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

因為,所以的虛部是.故選B.2、D【解析】

設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.3、C【解析】

根據(jù)集合的并集、補集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎(chǔ)題.4、B【解析】

在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含項的系數(shù).【詳解】的展開式通項為,令,得,可得含項的系數(shù)為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.5、B【解析】

根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.6、A【解析】

根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設,則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.7、D【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關(guān)復數(shù)的問題,涉及到的知識點有復數(shù)的乘除運算,復數(shù)的共軛復數(shù),復數(shù)的模,屬于基礎(chǔ)題目.8、D【解析】

利用導數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.9、A【解析】

利用復數(shù)的乘法、除法運算求出,再根據(jù)共軛復數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數(shù)的四則運算、共軛復數(shù)的概念,屬于基礎(chǔ)題.10、B【解析】

利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.11、A【解析】

由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點的坐標為,又,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎(chǔ)題.12、A【解析】

畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點,在區(qū)域內(nèi)是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】

由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計算公式,求出展開式中的系數(shù).【詳解】∵已知,則,

它表示4個因式的乘積.

故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.

故展開式中的系數(shù).

故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計算公式,屬于中檔題.14、1【解析】

利用輔助角公式化簡可得,由題可分析的最小值等于表示相鄰的一個對稱中心與一個對稱軸的距離為,進而求解即可.【詳解】由題,,因為,,且的最小值等于,即相鄰的一個對稱中心與一個對稱軸的距離為,所以,即,所以,故答案為:1【點睛】本題考查正弦型函數(shù)的對稱性的應用,考查三角函數(shù)的化簡.15、【解析】

由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設,又由,可知,從而可得,而點在橢圓上,所以將點的坐標代入橢圓方程中化簡可得結(jié)果.【詳解】設,,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點睛】此題考查的是利用橢圓中相關(guān)兩個點的關(guān)系求離心率,綜合性強,屬于難題.16、【解析】試題分析:由三角函數(shù)定義知,又由誘導公式知,所以答案應填:.考點:1、三角函數(shù)定義;2、誘導公式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.18、(1);(2)當時,在上是減函數(shù);當時,在上是增函數(shù);(3)證明見解析.【解析】

(1)當時,,求得其導函數(shù),,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導函數(shù),并得出導函數(shù)取得正負的區(qū)間,可得出函數(shù)的單調(diào)性;(3)當時,,,由(2)得的單調(diào)區(qū)間,以當方程有兩個不相等的實數(shù)根,不妨設,且有,,構(gòu)造函數(shù),分析其導函數(shù)的正負得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當時,,所以,,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當時,,當時,,所以在上是減函數(shù),在上是增函數(shù);(3)當時,,,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時,,當時,,,所以當方程有兩個不相等的實數(shù)根,不妨設,且有,,構(gòu)造函數(shù),則,當時,所以,在上單調(diào)遞減,且,,由,在上單調(diào)遞增,.所以.【點睛】本題考查運用導函數(shù)求函數(shù)在某點的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當?shù)暮瘮?shù),得出其導函數(shù)的正負,得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.19、(1)(2)【解析】

(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內(nèi)角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題,20、(1)整數(shù)的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當時,有,,所以,函數(shù)在上單調(diào)遞增;當時,有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點睛】本題考查導數(shù)在函數(shù)單調(diào)性、最值中的應用,以及放縮法證明不等式的技巧,屬于難題.21、(1)an=2n【解析】

(1)先設出數(shù)列的公差為d,結(jié)合題中條件,求出首項和公差,即可得出結(jié)果.(2)利用裂項相消法求出數(shù)列的和.【詳解】解:(1)設公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,裂項相消法在數(shù)列求和中的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.22、(1)證明見解析(2)【解析】

(1)由得令可得,進而得到,同理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論