2024屆江西省宜春市樟樹中學高三第一次模擬考試數(shù)學試卷含解析_第1頁
2024屆江西省宜春市樟樹中學高三第一次模擬考試數(shù)學試卷含解析_第2頁
2024屆江西省宜春市樟樹中學高三第一次模擬考試數(shù)學試卷含解析_第3頁
2024屆江西省宜春市樟樹中學高三第一次模擬考試數(shù)學試卷含解析_第4頁
2024屆江西省宜春市樟樹中學高三第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江西省宜春市樟樹中學高三第一次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為()A.40 B.60 C.80 D.1002.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.3.點在所在的平面內,,,,,且,則()A. B. C. D.4.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.5.已知復數(shù)滿足,且,則()A.3 B. C. D.6.已知,,,則的最小值為()A. B. C. D.7.已知為定義在上的奇函數(shù),且滿足當時,,則()A. B. C. D.8.若函數(shù)有且僅有一個零點,則實數(shù)的值為()A. B. C. D.9.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.10.已知公差不為0的等差數(shù)列的前項的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.4011.在的展開式中,含的項的系數(shù)是()A.74 B.121 C. D.12.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對二、填空題:本題共4小題,每小題5分,共20分。13.過且斜率為的直線交拋物線于兩點,為的焦點若的面積等于的面積的2倍,則的值為___________.14.設為等比數(shù)列的前項和,若,且,,成等差數(shù)列,則.15.甲、乙兩人同時參加公務員考試,甲筆試、面試通過的概率分別為和;乙筆試、面試通過的概率分別為和.若筆試面試都通過才被錄取,且甲、乙錄取與否相互獨立,則該次考試只有一人被錄取的概率是__________.16.正項等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時的值為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.18.(12分)已知橢圓的焦距為2,且過點.(1)求橢圓的方程;(2)設為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,(?。┳C明:平分線段(其中為坐標原點);(ⅱ)當取最小值時,求點的坐標.19.(12分)2019年安慶市在大力推進城市環(huán)境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網(wǎng)絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.20.(12分)如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標原點,且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標準方程;(Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當?shù)拿娣e取最大值時,求兩直線MA,MB斜率的比值.21.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.22.(10分)已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由正態(tài)分布的性質,根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質,考查學生分析問題的能力,難度容易.2、C【解析】

將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.3、D【解析】

確定點為外心,代入化簡得到,,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯(lián)立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學生的計算能力.4、D【解析】

根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.5、C【解析】

設,則,利用和求得,即可.【詳解】設,則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復數(shù)的乘法法則的應用,考查共軛復數(shù)的應用.6、B【解析】,選B7、C【解析】

由題設條件,可得函數(shù)的周期是,再結合函數(shù)是奇函數(shù)的性質將轉化為函數(shù)值,即可得到結論.【詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當時,,所以,.故選:C.【點睛】本題考查函數(shù)的周期性,由題設得函數(shù)的周期是解答本題的關鍵,屬于基礎題.8、D【解析】

推導出函數(shù)的圖象關于直線對稱,由題意得出,進而可求得實數(shù)的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數(shù)的圖象關于直線對稱.若函數(shù)的零點不為,則該函數(shù)的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當時,令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時,函數(shù)與函數(shù)的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數(shù)有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數(shù)的零點個數(shù)求參數(shù),考查函數(shù)圖象對稱性的應用,解答的關鍵就是推導出,在求出參數(shù)后要對參數(shù)的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.9、D【解析】

因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質,意在考查學生對這些知識的理解掌握水平.10、B【解析】

,將代入,求得公差d,再利用等差數(shù)列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數(shù)列的前n項和公式,考查等差數(shù)列基本量的計算,是一道容易題.11、D【解析】

根據(jù),利用通項公式得到含的項為:,進而得到其系數(shù),【詳解】因為在,所以含的項為:,所以含的項的系數(shù)是的系數(shù)是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數(shù),還考查了運算求解的能力,屬于基礎題,12、A【解析】

首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關系以及面積關系求解即可.【詳解】如圖,設,由,則,由可得,由,則,所以,得.故答案為:2【點睛】此題考查了拋物線的性質,屬于中檔題.14、.【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點:等差數(shù)列與等比數(shù)列的性質.【名師點睛】本題主要考查等差與等比數(shù)列的性質,屬于容易題,在解題過程中,需要建立關于等比數(shù)列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.15、【解析】

分別求得甲、乙被錄取的概率,根據(jù)獨立事件概率公式可求得結果.【詳解】甲被錄取的概率;乙被錄取的概率;只有一人被錄取的概率.故答案為:.【點睛】本題考查獨立事件概率的求解問題,屬于基礎題.16、2【解析】

先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數(shù)列、等差數(shù)列的有關性質以及等比數(shù)列求積、求最值的有關運算,中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(II).【解析】

試題分析:(1)取中點,連結,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結果.試題解析:(I)取中點,連結,依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因為,所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點,建立空間直角坐標系如圖所示,則,由可得點的坐標所以,設平面的法向量為,則,即解得,令,得,顯然平面的一個法向量為,依題意,解得或(舍去),所以,當時,二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當時,二面角的余弦值為.18、(1)(2)(?。┮娊馕觯áⅲc的坐標為.【解析】

(1)由題意得,再由的關系求出,即可得橢圓的標準方程;(2)(i)設,的中點為,,設直線的方程為,代入橢圓方程中,運用根與系數(shù)的關系和中點坐標公式,結合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調性,可得取最小值時的條件獲得等量關系,從而確定點的坐標.【詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設,的中點為,(?。┳C明:由,可設直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當取最小值時,點的坐標為【點睛】此題考那可是橢圓方程和性質,主要考查橢圓方程的運用,運用根與系數(shù)的關系和中點坐標公式,同時考查弦長公式,屬于較難題.19、(1)(2)詳見解析【解析】

(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態(tài)分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發(fā)生的概率計算公式,再列表得到其分布列.【詳解】解:(1)從這1000人問卷調查得到的平均值為∵由于得分Z服從正態(tài)分布,(2)設得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;;;;所以X的分布列為X10203040P法二:2次隨機贈送的話費及對應概率如下2次話費總和203040PX的取值為10,20,30,40;;;;所以X的分布列為X10203040P【點睛】本題考查了正態(tài)分布、離散型隨機變量的分布列,屬于基礎題.20、(1),(2)【解析】分析:(1)根據(jù)題的條件,得到對應的橢圓的上頂點,即可以求得橢圓中相應的參數(shù),結合橢圓的離心率的大小,求得相應的參數(shù),從而求得橢圓的方程;(2)設出一條直線的方程,與橢圓的方程聯(lián)立,消元,利用求根公式求得對應點的坐標,進一步求得向量的坐標,將S表示為關于k的函數(shù)關系,從眼角函數(shù)的角度去求最值,從而求得結果.詳解:(Ⅰ)依題意得對:,,得:;同理:.(Ⅱ)設直線的斜率分別為,則MA:,與橢圓方程聯(lián)立得:,得,得,,所以同理可得.所以,從而可以求得因為,所以,不妨設,所以當最大時,,此時兩直線MA,MB斜率的比值.點睛:該題考查的是有關橢圓與直線的綜合題,在解題的過程中,注意橢圓的對稱性,以及其特殊性,與y軸的交點即為橢圓的上頂點,結合橢圓焦點所在軸,得到相應的參數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論