版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆陜西省漢臺中學高三沖刺模擬數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上函數(shù)的圖象關(guān)于原點對稱,且,若,則()A.0 B.1 C.673 D.6742.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.3.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.4.設(shè)點,,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件5.關(guān)于函數(shù)有下述四個結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結(jié)論的編號是()A.①②④ B.①③ C.①④ D.②④6.已知,滿足約束條件,則的最大值為A. B. C. D.7.要排出高三某班一天中,語文、數(shù)學、英語各節(jié),自習課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.8.已知三棱柱()A. B. C. D.9.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直10.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.11.設(shè)集合,,若,則的取值范圍是()A. B. C. D.12.已知三棱柱的所有棱長均相等,側(cè)棱平面,過作平面與平行,設(shè)平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關(guān)系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結(jié)果相同,則的最小值為______.14.已知數(shù)列遞增的等比數(shù)列,若,,則______.15.已知橢圓的離心率是,若以為圓心且與橢圓有公共點的圓的最大半徑為,此時橢圓的方程是____.16.某同學周末通過拋硬幣的方式?jīng)Q定出去看電影還是在家學習,拋一枚硬幣兩次,若兩次都是正面朝上,就在家學習,否則出去看電影,則該同學在家學習的概率為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點,且.①求實數(shù)的取值范圍;②求證:.18.(12分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實根為.令若存在,,,使得,證明:.19.(12分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,,的斜率分別為,,,求的值.20.(12分)對于給定的正整數(shù)k,若各項均不為0的數(shù)列滿足:對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.21.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.22.(10分)已知函數(shù).(1)解不等式;(2)若,,,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.2、B【解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的應用,試題有一定的技巧,屬于中檔試題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程.3、B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結(jié)果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨取;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.4、C【解析】
利用向量垂直的表示、向量數(shù)量積的運算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點,,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.5、C【解析】
根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點對四個結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結(jié)論序號為①④.故選:C【點睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.6、D【解析】
作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經(jīng)過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.7、C【解析】
根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學都安排在上午;②語文和數(shù)學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學都一個安排在上午,一個安排在下午.語文和數(shù)學一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數(shù)原理的應用,屬于中等題.8、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=9、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關(guān)系10、B【解析】
計算出的值,推導出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.11、C【解析】
由得出,利用集合的包含關(guān)系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計算能力,屬于基礎(chǔ)題.12、B【解析】
利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點,為的中點,由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補角,分別為,設(shè)三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【點睛】本題主要考查了空間中兩直線所成角的計算,考查了學生的作圖,用圖能力,體現(xiàn)了學生直觀想象的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎(chǔ)題.14、【解析】
,建立方程組,且,求出,進而求出的公比,即可求出結(jié)論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.
故答案為:.【點睛】本題考查等比數(shù)列的性質(zhì)、通項公式,屬于基礎(chǔ)題.15、【解析】
根據(jù)題意設(shè)為橢圓上任意一點,表達出,再根據(jù)二次函數(shù)的對稱軸與求解的關(guān)系分析最值求解即可.【詳解】因為橢圓的離心率是,,所以,故橢圓方程為.因為以為圓心且與橢圓有公共點的圓的最大半徑為,所以橢圓上的點到點的距離的最大值為.設(shè)為橢圓上任意一點,則.所以因為的對稱軸為.(i)當時,在上單調(diào)遞增,在上單調(diào)遞減.此時,解得.(ii)當時,在上單調(diào)遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點睛】本題主要考查了橢圓上的點到定點的距離最值問題,需要根據(jù)題意設(shè)橢圓上的點,再求出距離,根據(jù)二次函數(shù)的對稱軸與區(qū)間的關(guān)系分析最值的取值點分類討論求解.屬于中檔題.16、【解析】
采用列舉法計算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學習只有1種情況,即(正,正),故該同學在家學習的概率為.故答案為:【點睛】本題考查古典概型的概率計算,考查學生的基本計算能力,是一道基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導并表示,代入上述方程即可解得答案;(2)①已知要求等價于在上有兩個根,且,即在上有兩個不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時單調(diào)性推及極值說明即可;②由①可知,是方程的兩個不等的實根,由韋達定理可表達根與系數(shù)的關(guān)系,進而用含的式子表示,令,對求導分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實數(shù)的值為.(2)①因為函數(shù)在定義域上有兩個極值點,且,所以在上有兩個根,且,即在上有兩個不相等的根.所以解得.當時,若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個極值點,且.所以,實數(shù)的取值范圍是.②由①可知,是方程的兩個不等的實根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當時,,在上單調(diào)遞減;當時,,在上單調(diào)遞增,所以當時,,又,,所以,即,故得證.【點睛】本題考查導數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點個數(shù)求參數(shù)范圍問題,還考查了利用導數(shù)證明不等式成立,屬于難題.18、(1)(2)證明見解析(3)證明見解析【解析】
(1)由題意可得,,令,利用導數(shù)得在上單調(diào)遞減,進而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡可得.令,,因為,所以,.所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設(shè),則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設(shè),因為在上是減函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實根為,即,要證,由可知,即要證.當時,,,因而在上單調(diào)遞增.當時,,,因而在上單調(diào)遞減.因為,所以,要證.即要證.記,.因為,所以,則..設(shè),,當時,.時,,故.且,故,因為,所以.因此,即在上單調(diào)遞增.所以,即.故得證.【點睛】本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成立問題,考查導數(shù)的應用,轉(zhuǎn)化思想,構(gòu)造函數(shù)研究單調(diào)性,屬于難題.19、(1)(2)【解析】
(1)根據(jù)拋物線的焦點求得橢圓的焦點,由此求得,結(jié)合橢圓離心率求得,進而求得,從而求得橢圓的標準方程,求得橢圓上頂點的坐標,由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點的縱坐標,由此求得的面積.(2)求得兩點的坐標,設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因為拋物線的焦點坐標為,所以橢圓的右焦點的坐標為,所以,因為橢圓的離心率為,所以,解得,所以,故橢圓的標準方程為.其上頂點為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線的斜率不為0,故可設(shè):.由,消去,得,所以所以,又因為點在橢圓上,所以,所以.【點睛】本小題主要考查拋物線的焦點,橢圓的標準方程和幾何性質(zhì)、直線與橢圓,三角形的面積等基礎(chǔ)知識,考查推理論證能力、運算求解能力,化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.20、(1)證明見詳解;(2)證明見詳解【解析】
(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,,則對于任意都成立,則成等比數(shù)列,設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 店面合同簽署合同范例
- 企業(yè)之間借貸合同范例
- 影視項目授權(quán)合同范例
- 工程混凝土銷售合同范例
- 開店用工合同范例
- 出租車位協(xié)議合同范例
- 個人墳墓購買合同范例
- 彩鋼瓦房銷售合同模板
- 去老撾打工合同范例
- 企業(yè)搬家服務合同范例
- XX有限公司人員分流方案
- 大語言模型賦能自動化測試實踐、挑戰(zhàn)與展望-復旦大學(董震)
- 期中模擬檢測(1-3單元)2024-2025學年度第一學期西師大版二年級數(shù)學
- 追覓科技在線測評邏輯題
- 2024-2030年中國演藝行業(yè)發(fā)展分析及發(fā)展前景與趨勢預測研究報告
- 2024年重慶市渝北區(qū)數(shù)據(jù)谷八中小升初數(shù)學試卷
- 凝中國心鑄中華魂鑄牢中華民族共同體意識-小學民族團結(jié)愛國主題班會課件
- 2024年AI大模型場景探索及產(chǎn)業(yè)應用調(diào)研報告-前瞻
- 演講學智慧樹知到答案2024年同濟大學
- 北師大版六年級數(shù)學上冊-第一單元《圓》復習課件
- 24秋國家開放大學《會計信息系統(tǒng)(本)》測試題參考答案
評論
0/150
提交評論