




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
甘肅省白銀市景泰縣2024年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自內(nèi)切圓的概率是()A. B. C. D.2.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.53.設(shè),集合,則()A. B. C. D.4.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.5.已知數(shù)列的通項(xiàng)公式是,則()A.0 B.55 C.66 D.786.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.7.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.8.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]9.如圖,雙曲線的左,右焦點(diǎn)分別是直線與雙曲線的兩條漸近線分別相交于兩點(diǎn).若則雙曲線的離心率為()A. B.C. D.10.框圖與程序是解決數(shù)學(xué)問題的重要手段,實(shí)際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計(jì)算一組數(shù)據(jù)的方差,設(shè)計(jì)了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,11.已知隨機(jī)變量的分布列是則()A. B. C. D.12.函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的值為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前項(xiàng)和為,且,則______.14.已知實(shí)數(shù)、滿足,且可行域表示的區(qū)域?yàn)槿切?,則實(shí)數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實(shí)數(shù)等于______.15.已知正方形邊長為,空間中的動點(diǎn)滿足,,則三棱錐體積的最大值是______.16.如果拋物線上一點(diǎn)到準(zhǔn)線的距離是6,那么______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上頂點(diǎn)為,圓與軸的正半軸交于點(diǎn),與有且僅有兩個(gè)交點(diǎn)且都在軸上,(為坐標(biāo)原點(diǎn)).(1)求橢圓的方程;(2)已知點(diǎn),不過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),證明:直線與直線的斜率互為相反數(shù).18.(12分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值20.(12分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大?。唬?)若的面積為,求的周長的最小值.21.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,右準(zhǔn)線為,是上的兩個(gè)動點(diǎn),.(Ⅰ)若,求的值;(Ⅱ)證明:當(dāng)取最小值時(shí),與共線.22.(10分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長;(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計(jì)算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點(diǎn)睛】本題主要考查了面積比的幾何概型的概率的計(jì)算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.2、D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點(diǎn)睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.3、B【解析】
先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點(diǎn)睛】本題主要考查集合的化簡和運(yùn)算,意在考查學(xué)生對這些知識的掌握水平和計(jì)算推理能力.4、D【解析】
設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來求解最值.5、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計(jì)算出的值,可進(jìn)一步得到數(shù)列的通項(xiàng)公式,然后代入轉(zhuǎn)化計(jì)算,再根據(jù)等差數(shù)列求和公式計(jì)算出結(jié)果.【詳解】解:由題意得,當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),所以當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),,所以故選:D【點(diǎn)睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.6、B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點(diǎn)問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.7、C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時(shí),取得等號.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.8、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.9、A【解析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時(shí),最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.10、A【解析】
依題意問題是,然后按直到型驗(yàn)證即可.【詳解】根據(jù)題意為了計(jì)算7個(gè)數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.11、C【解析】
利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識的考查.12、C【解析】由函數(shù)的圖象向右平移個(gè)單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時(shí),取得最大值,即,,,當(dāng)時(shí),解得,故選C.點(diǎn)睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時(shí),取得最大值,求解可得實(shí)數(shù)的值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項(xiàng)和公式求得的值.【詳解】因?yàn)闉榈炔顢?shù)列,所以,解得,所以.故答案為:【點(diǎn)睛】本小題考查等差數(shù)列的性質(zhì),前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識;考查運(yùn)算求解能力,應(yīng)用意識.14、【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點(diǎn)時(shí),此時(shí),直線:,與:的交點(diǎn)為,該點(diǎn)也在直線:上,故,故答案為:;.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.15、【解析】
以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點(diǎn),空間中的動點(diǎn)滿足,,所以,整理得,,當(dāng),時(shí),取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點(diǎn)睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.16、【解析】
先求出拋物線的準(zhǔn)線方程,然后根據(jù)點(diǎn)到準(zhǔn)線的距離為6,列出,直接求出結(jié)果.【詳解】拋物線的準(zhǔn)線方程為,由題意得,解得.∵點(diǎn)在拋物線上,∴,∴,故答案為:.【點(diǎn)睛】本小題主要考查拋物線的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)根據(jù)條件可得,進(jìn)而得到,即可得到橢圓方程;(2)設(shè)直線的方程為,聯(lián)立,分別表示出直線和直線斜率,相加利用根與系數(shù)關(guān)系即可得到.【詳解】解:(1)圓與有且僅有兩個(gè)交點(diǎn)且都在軸上,所以,又,,解得,故橢圓的方程為;(2)設(shè)直線的方程為,聯(lián)立,整理可得,則,解得,設(shè)點(diǎn),,則,,所以,故直線與直線的斜率互為相反數(shù).【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,涉及橢圓的幾何性質(zhì),關(guān)鍵是求出橢圓的標(biāo)準(zhǔn)方程,屬于中檔題.18、(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關(guān)于原點(diǎn)對稱可得的表達(dá)式,再去掉絕對值即可解不等式;(2)對,不等式成立等價(jià)于,去絕對值得不等式組,即可求得實(shí)數(shù)的取值范圍.試題解析:(1)∵函數(shù)和的圖象關(guān)于原點(diǎn)對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.19、(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【解析】
(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,,之后進(jìn)行化一,可得到最值,此時(shí),可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標(biāo)方程為.由得,將代入得,故曲線的直角坐標(biāo)方程為.(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,則,其中為銳角,且滿足,,當(dāng)時(shí),取最大值,此時(shí),【點(diǎn)睛】這個(gè)題目考查了參數(shù)方程化為普通方程的方法,極坐標(biāo)化為直角坐標(biāo)的方法,以及極坐標(biāo)中極徑的幾何意義,極徑代表的是曲線上的點(diǎn)到極點(diǎn)的距離,在參數(shù)方程和極坐標(biāo)方程中,能表示距離的量一個(gè)是極徑,一個(gè)是t的幾何意義,其中極徑多數(shù)用于過極點(diǎn)的曲線,而t的應(yīng)用更廣泛一些.20、(1)(2)【解析】
(1)因?yàn)椋?,由余弦定理得,化簡得,可得,解得,又因?yàn)?,所?(6分)(2)因?yàn)?,所以,則(當(dāng)且僅當(dāng)時(shí),取等號).由(1)得(當(dāng)且僅當(dāng)時(shí),取等號),解得.所以(當(dāng)且僅當(dāng)時(shí),取等號),所以的周長的最小值為.21、(Ⅰ)(Ⅱ)證明見解析.【解析】由與,得,,的方程為.設(shè),則,由得.①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)電工程協(xié)同作業(yè)試題及答案
- 網(wǎng)絡(luò)工程師實(shí)踐課題試題及答案
- 鼓勵(lì)互動軟件設(shè)計(jì)師考試試題及答案
- 西方國家的教育公平與社會影響試題及答案
- 2025年醫(yī)療美容消費(fèi)者心理特點(diǎn)與服務(wù)質(zhì)量提升路徑報(bào)告
- 測試管理工具的選擇標(biāo)準(zhǔn)試題及答案
- 可持續(xù)城市發(fā)展的公共政策思路試題及答案
- 機(jī)電工程技術(shù)的應(yīng)用實(shí)例及試題與答案
- 公共政策制定程序試題及答案
- 機(jī)電工程行業(yè)中關(guān)鍵技術(shù)的研究與發(fā)展試題及答案
- 加工風(fēng)管合同樣本
- 2025-2030中國電動自行車充電樁行業(yè)市場深度分析及發(fā)展前景與投資研究報(bào)告
- 本土資源在小學(xué)水墨畫教學(xué)中的實(shí)踐與運(yùn)用000
- 專升本心理學(xué)題庫+參考答案
- 獸醫(yī)傳染病學(xué)試題及答案
- 瀝青路面施工方案施工方案
- GB/T 45236-2025化工園區(qū)危險(xiǎn)品運(yùn)輸車輛停車場建設(shè)規(guī)范
- 2022年湖南省株洲二中自主招生數(shù)學(xué)試卷
- 《組織簽字儀式》課件
- 智障個(gè)別化教育計(jì)劃案例(3篇)
- 血小板膜蛋白功能研究-洞察分析
評論
0/150
提交評論