版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省余姚名校2024年高考數(shù)學(xué)五模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c2.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+13.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.104.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.35.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.6.展開項中的常數(shù)項為A.1 B.11 C.-19 D.517.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于8.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.9.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當(dāng)取得最大值時,雙曲線的離心率為()A. B. C. D.10.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關(guān)于坐標(biāo)原點對稱,則的最小值為()A. B. C. D.11.已知命題:“關(guān)于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.12.設(shè),是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足不等式組,則的取值范圍為________.14.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.15.設(shè)隨機變量服從正態(tài)分布,若,則的值是______.16.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.18.(12分)已知點,且,滿足條件的點的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.19.(12分)已知橢圓,點,點滿足(其中為坐標(biāo)原點),點在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點為,若不經(jīng)過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.20.(12分)在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為(t為參數(shù),α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C有唯一的公共點,求角α的大?。?1.(12分)設(shè)實數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.22.(10分)某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點睛】本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.2、B【解析】
以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學(xué)生的計算能力,是中檔題.3、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構(gòu)建和的方程組求通項公式.4、B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.5、D【解析】
根據(jù)題意,求得的坐標(biāo),根據(jù)點在橢圓上,點的坐標(biāo)滿足橢圓方程,即可求得結(jié)果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標(biāo)為,則,易知點坐標(biāo),將點坐標(biāo)代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據(jù)題意求得點的坐標(biāo),屬中檔題.6、B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項是由每個括號各出一項相乘組合而成的.7、D【解析】
試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.8、C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.9、D【解析】
先求出四個頂點、四個焦點的坐標(biāo),四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標(biāo)為,四個焦點的坐標(biāo)為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當(dāng)取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.10、B【解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關(guān)于坐標(biāo)原點對稱故的最小值為故選:B【點睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.11、B【解析】命題p:,為,又為真命題的充分不必要條件為,故12、C【解析】
利用線線、線面、面面相應(yīng)的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當(dāng)直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為.14、【解析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補.15、1【解析】
由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.16、【解析】
依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進一步得到D橫坐標(biāo),再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點是E,所以D的橫坐標(biāo)為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學(xué)生基本計算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設(shè)為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據(jù)圖可知,二面角的余弦值為.【點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學(xué)生的計算能力和空間想象能力.18、(1)(2)存在,或.【解析】
(1)由得看成到兩定點的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線的斜率存在時,設(shè)直線點斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點,且的橢圓,由,可得,可得曲線的方程為;假設(shè)存在過點的直線l符合題意.當(dāng)直線的斜率不存在,設(shè)方程為,可得為短軸的兩個端點,不成立;當(dāng)直線的斜率存在時,設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點睛】本題考查求軌跡方程及直線與圓錐曲線位置關(guān)系問題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動點的等量關(guān)系式,由等量關(guān)系結(jié)合曲線定義判斷是何種曲線,再設(shè)出標(biāo)準(zhǔn)方程,用待定系數(shù)法求解;(2)解決是否存在直線的問題時,可依據(jù)條件尋找適合條件的直線方程,聯(lián)立方程消元得出一元二次方程,利用判別式得出是否有解.19、(1)(2)是,【解析】
(1)設(shè),根據(jù)條件可求出的坐標(biāo),再利用在橢圓上,代入橢圓方程求出即可;(2)設(shè)運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進而求出周長為定值.【詳解】(1)設(shè),因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設(shè)切點為,則,同理即,所以,又,則的周長,所以周長為定值.【點睛】標(biāo)準(zhǔn)方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.20、(1)當(dāng)時,直線l方程為x=-1;當(dāng)時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)對直線l的傾斜角分類討論,消去參數(shù)即可求出其普通方程;由,即可求出曲線C的直角坐標(biāo)方程;(2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,根據(jù)條件Δ=0,即可求解.【詳解】(1)當(dāng)時,直線l的普通方程為x=-1;當(dāng)時,消去參數(shù)得直線l的普通方程為y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即為曲線C的直角坐標(biāo)方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcos
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度重型壓路機買賣及維修保養(yǎng)合同3篇
- 2025年度企業(yè)自駕游租車合同二零二五年度專用4篇
- 2025年度個人智能健康監(jiān)測技術(shù)入股協(xié)議4篇
- 2025年個人住宅防水保溫一體化合同范本4篇
- 開店策劃指導(dǎo)的合同(2篇)
- 民營醫(yī)療服務(wù):穩(wěn)中求進關(guān)注老齡化+供需錯配格局下的投資機會
- 二零二五版門窗行業(yè)綠色物流與倉儲服務(wù)合同4篇
- 網(wǎng)架鋼結(jié)構(gòu)施工方案
- 二零二五版智能門牌系統(tǒng)與物聯(lián)網(wǎng)技術(shù)合同4篇
- 公路預(yù)埋管線施工方案
- 2025年度版權(quán)授權(quán)協(xié)議:游戲角色形象設(shè)計與授權(quán)使用3篇
- 心肺復(fù)蘇課件2024
- 《城鎮(zhèn)燃?xì)忸I(lǐng)域重大隱患判定指導(dǎo)手冊》專題培訓(xùn)
- 湖南財政經(jīng)濟學(xué)院專升本管理學(xué)真題
- 全國身份證前六位、區(qū)號、郵編-編碼大全
- 2024-2025學(xué)年福建省廈門市第一中學(xué)高一(上)適應(yīng)性訓(xùn)練物理試卷(10月)(含答案)
- 《零售學(xué)第二版教學(xué)》課件
- 廣東省珠海市香洲區(qū)2023-2024學(xué)年四年級下學(xué)期期末數(shù)學(xué)試卷
- 房地產(chǎn)行業(yè)職業(yè)生涯規(guī)劃
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- MOOC 數(shù)字電路與系統(tǒng)-大連理工大學(xué) 中國大學(xué)慕課答案
評論
0/150
提交評論