泊松過(guò)程完整_第1頁(yè)
泊松過(guò)程完整_第2頁(yè)
泊松過(guò)程完整_第3頁(yè)
泊松過(guò)程完整_第4頁(yè)
泊松過(guò)程完整_第5頁(yè)
已閱讀5頁(yè),還剩85頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第三章泊松過(guò)程例1泊松過(guò)程的一個(gè)實(shí)例背景:考慮在時(shí)間間隔(0,t]中某保險(xiǎn)公司收到的某類保險(xiǎn)的理賠次數(shù)N(t),它是一個(gè)計(jì)數(shù)過(guò)程.此類過(guò)程有如下特點(diǎn):(1)零初值性:N(0)=0;(2)獨(dú)立增量性:在不同的時(shí)間區(qū)段內(nèi)的理賠次數(shù)彼此獨(dú)立;(3)平穩(wěn)增量性:在同樣長(zhǎng)的時(shí)間區(qū)段內(nèi)理賠次數(shù)的概率規(guī)律是一樣的;(4)普通性:在非常短的時(shí)間區(qū)段Δt內(nèi)的理賠次數(shù)幾乎不可能超過(guò)1次,且發(fā)生1次理賠的概率近似與Δt成正比。例2顧客到達(dá)某商店服從參數(shù)λ=4人/小時(shí)的泊松過(guò)程,已知商店上午9:00開(kāi)門,試求到9:30時(shí)僅到一位顧客,而到11:30時(shí)總計(jì)已達(dá)5位顧客的概率。解:設(shè)X(t)表示在時(shí)間t時(shí)到達(dá)的顧客數(shù)

P(X(0.5)=1,X(2.5)=5)=P(X(0.5)=1,X(2.5)-X(0.5)=4)=P(X(0.5)=1)P(X(2)=4)3.2泊松過(guò)程的基本性質(zhì)數(shù)字特征

泊松過(guò)程的時(shí)間間隔Tn與等待時(shí)間Wn的分布

到達(dá)時(shí)間Wn的條件分布數(shù)字特征均值函數(shù)方差函數(shù)相關(guān)函數(shù)協(xié)方差函數(shù)

推導(dǎo)過(guò)程設(shè){X(t),t

0}是參數(shù)為

的泊松過(guò)程,對(duì)任意t,s

[0,+

),若s<t

,則有協(xié)方差函數(shù)泊松過(guò)程的特征函數(shù)為泊松過(guò)程的時(shí)間間隔Tn與

等待時(shí)間Wn的分布

設(shè){X(t),t

0}是參數(shù)為

的泊松過(guò)程,

X(t)表示到t時(shí)刻為止事件A發(fā)生的次數(shù),

Wn表示第n次事件A發(fā)生的時(shí)間(n

1),也稱為第n次事件A的等待時(shí)間,或到達(dá)時(shí)間,

Tn表示第n-1次事件A發(fā)生到第n次事件A發(fā)生的時(shí)間間隔。等待時(shí)間Wn與時(shí)間間隔Tn均為隨機(jī)變量時(shí)間間隔Tn

設(shè){X(t),t

0}是參數(shù)為

的泊松過(guò)程,{Tn,n

1}是相應(yīng)第n次事件A發(fā)生的時(shí)間間隔序列,則隨機(jī)變量Tn是獨(dú)立同分布的均值為1/

的指數(shù)分布。證:(1)n=1

事件{T1>t}發(fā)生當(dāng)且僅當(dāng)在[0,t]內(nèi)沒(méi)有事件發(fā)生T1服從均值為1/

的指數(shù)分布(2)n=2P{T2>t|T1=s}=P{在(s,s+t]內(nèi)沒(méi)有事件發(fā)生|T1=s}=P{X(s+t)-X(s)=0|X(s)-X(0)=1}=P{X(s+t)-X(s)=0}T2服從均值為1/

的指數(shù)分布(3)n

1時(shí)間間隔Tn的分布為概率密度為等待時(shí)間(到達(dá)時(shí)間)Wn

設(shè){X(t),t

0}是參數(shù)為

的泊松過(guò)程,{Wn,n

1}是相應(yīng)等待時(shí)間序列,則Wn服從參數(shù)為n與

分布,概率密度為證明:,Ti為時(shí)間間隔到達(dá)時(shí)間Wn的分布

參數(shù)為n與

分布又稱愛(ài)爾蘭分布,它是n個(gè)相互獨(dú)立且服從指數(shù)分布的隨機(jī)變量之和的分布。到達(dá)時(shí)間Wn的條件分布假設(shè)在[0,t]內(nèi)事件A已經(jīng)發(fā)生1次,我們要確定這一事件到達(dá)時(shí)間W1的分布。因?yàn)椴此蛇^(guò)程有平穩(wěn)獨(dú)立增量,固有理由認(rèn)為[0,t]內(nèi)長(zhǎng)度相等的區(qū)間包含這個(gè)時(shí)間的概率相等。換言之,到達(dá)時(shí)間在[0,t]上服從均勻分布。

對(duì)s<t,有對(duì)s

t,有從而W1的條件分布函數(shù)為條件分布密度函數(shù)為設(shè){X(t),t

0}是泊松過(guò)程,已知在[0,t]內(nèi)事件A發(fā)生n次,則這n次事件的到達(dá)時(shí)間W1<W2<

<Wn的條件概率密度為例1

設(shè)在[0,t]內(nèi)事件A已經(jīng)發(fā)生n次,且0<s<t,對(duì)于0<k<n,求在[0,s]內(nèi)事件A發(fā)生k次的概率解:參數(shù)為n和s/t的二項(xiàng)分布例2

已知儀器已知儀器在[0,t]內(nèi)發(fā)生振動(dòng)的次數(shù)X(t)是具有參數(shù)λ的泊松過(guò)程。若儀器振動(dòng)k(k≥1)次就會(huì)出現(xiàn)故障,求儀器在時(shí)刻t0

正常工作的概率。解:儀器發(fā)生第k振動(dòng)的時(shí)刻Wk

,則Wk

的概率分布為Γ分布:故儀器在時(shí)刻t0

正常工作的概率為:例3

設(shè)和是分別具有參數(shù)和的相互獨(dú)立的泊松過(guò)程,證明(1)是具有參數(shù)的泊松過(guò)程;(2)不是泊松過(guò)程。證明:(1)

即是具有參數(shù)的泊松過(guò)程。(2)

故不是泊松過(guò)程。由例3可得以下性質(zhì):設(shè){X(t),t

0}、{Y(t),t

0}是相互獨(dú)立且強(qiáng)度分別為λ和μ的齊次泊松過(guò)程,則Z={Z(t)=X(t)+Y(t),t

0}是λ+μ的齊次泊松過(guò)程。(泊松過(guò)程具有可加性)練習(xí)題1.設(shè)電話總機(jī)在內(nèi)接到電話呼叫數(shù)是具有強(qiáng)度(每分鐘)λ為的泊松過(guò)程,求(1)兩分鐘內(nèi)接到3次呼叫的概率;(2)“第二分鐘內(nèi)收到第三次呼叫”的概率。答案1.(1)(2)2.設(shè)是具有參數(shù)的泊松過(guò)程,假定是相鄰事件的時(shí)間間隔,證明

(即“泊松過(guò)程無(wú)記憶”性)。2.證明:是相鄰事件的時(shí)間間隔,故。3.設(shè)到達(dá)某路口的綠、黑、灰色的汽車的到達(dá)率分別為,,,且均為泊松過(guò)程,它們相互獨(dú)立。若把這些汽車合并成單個(gè)輸出過(guò)程(假定無(wú)長(zhǎng)度、無(wú)延時(shí)),求(1)相鄰綠色汽車之間的不同到達(dá)時(shí)間間隔概率密度;(2)汽車之間的不同到達(dá)時(shí)刻的間隔概率密度。3.解:(1)相鄰綠色汽車之間的不同到達(dá)時(shí)間間隔,故其概率密度函數(shù)為(2)據(jù)題意,汽車合并成單個(gè)輸出過(guò)程是參數(shù)為的泊松過(guò)程,故汽車之間的不同到達(dá)時(shí)刻的間隔服從指數(shù)分布,即其概率密度函數(shù)為

4.設(shè)是具有參數(shù)的泊松過(guò)程,證明(1)(2)

證:5.設(shè)和設(shè)分別是具有參數(shù)和的相互獨(dú)立的泊松過(guò)程,令和是的兩個(gè)相繼泊松型事件出現(xiàn)的時(shí)間,且對(duì)于,有和,定義,求的概率分布。解:令,則,【注意:由示性函數(shù)得:】

第3章泊松過(guò)程主講人:

侯圣賢王金濤Word及PPT制作: 侯圣賢王金濤 陳海龍趙夢(mèng)龍3.1引言3.2相關(guān)概念及泊松過(guò)程的定義3.3泊松過(guò)程的基本性質(zhì)

例3.4

已知儀器在[0,t]內(nèi)發(fā)生振動(dòng)的次數(shù)X(t)是具有參數(shù)

的泊松過(guò)程。若儀器振動(dòng)k(k

1)次就會(huì)出現(xiàn)故障,求儀器在時(shí)刻t0正常工作的概率。

解:故障時(shí)刻就是儀器發(fā)生第k振動(dòng)的時(shí)刻Wk,服從

分布:

故儀器在時(shí)刻t0正常工作的概率為:例3.5設(shè)和是兩個(gè)相互獨(dú)立的泊松過(guò)程,它們?cè)趩挝粫r(shí)間內(nèi)平均出現(xiàn)的事件數(shù)分別為

,記

為過(guò)程

的第k次事件到達(dá)時(shí)間,

為過(guò)程的第1次事件到達(dá)時(shí)間,求,即第一個(gè)泊松過(guò)程的第k次事件發(fā)生比第二個(gè)泊松過(guò)程第1次事件發(fā)生早的概率。

解:

設(shè)Wk(1)

的取值為x,W1(2)的取值為y,由(3.8)式可得:則:其中D為由

y=x與y軸所圍區(qū)域,f(x,y)為Wk(1)與W1(2)的聯(lián)合概率密度,故:所以:

例3.6

設(shè)在[0,t]內(nèi)事件A已經(jīng)發(fā)生n次,且0<s<t,對(duì)于0<k<n,求在[0,s]內(nèi)事件A發(fā)生k次的概率。

解:

例3.7

設(shè)在[0,t]內(nèi)事件A已經(jīng)發(fā)生n次,求第k次(k<n)事件A發(fā)生的時(shí)間Wk的條件概率密度函數(shù)。

解:注,fWk(s)可由定理3得出。

例3.8儀器受到振動(dòng)而引起損傷。若振動(dòng)是按強(qiáng)度為λ的泊松過(guò)程發(fā)生,第k次振動(dòng)引起的損傷為Dk

,D1,D2,???,

是獨(dú)立同分布隨機(jī)變量序列,且和

{N(t),t≥0}獨(dú)立,其中N(t)表示[0,t]時(shí)間段儀器受到震動(dòng)次數(shù)。又假設(shè)儀器受到震動(dòng)而引起的損傷隨時(shí)間按指數(shù)減少,即如果震動(dòng)的初始損傷為D,則震動(dòng)之后經(jīng)過(guò)時(shí)間t后減小為

。假設(shè)損傷是可疊加的,

即在時(shí)刻t的損傷可表示為解:分析題目可知:其中為儀器受到第k次震動(dòng)的時(shí)刻,

由于,

相互獨(dú)立的均勻隨機(jī)變量的順序統(tǒng)計(jì)量,故:再由定理4知:在N(t)=n的條件下是

[0,t]上3.3.3剩余壽命與年齡的分布

設(shè)X(t)為在(0,t]內(nèi)事件A發(fā)生的個(gè)數(shù),Wn表示第n個(gè)事件發(fā)生的時(shí)刻,WX(t)表示在t時(shí)刻前最后一個(gè)事件發(fā)生的時(shí)刻,WX(t)+1表示在t時(shí)刻后首次事件發(fā)生的時(shí)刻,令:稱S(t)為剩余壽命或剩余時(shí)間,V(t)為年齡。由定義可知:

定理5設(shè){X(t),t≥0}是具有參數(shù)λ泊松過(guò)程,則有:(2)V(t)的分布為“截尾”的指數(shù)分布,即(1)S(t)與{Tn,n≥1}同分布,即證明:注意到,由:即t>x時(shí):t≤x時(shí):P{V(t)>x}=1

例3.9設(shè)到達(dá)火車站的顧客流遵循參數(shù)λ為的泊松流{N(t),t≥0},火車t時(shí)刻離開(kāi)車站,求在到達(dá)車站的顧客等待時(shí)間總和的期望值。解:設(shè)第i個(gè)顧客到達(dá)火車站的時(shí)刻為Si,則[0,t]內(nèi)到達(dá)車站的顧客等待時(shí)間總和為:由,因此1.設(shè)某個(gè)中子計(jì)數(shù)器對(duì)到達(dá)計(jì)數(shù)器的粒子只是沒(méi)個(gè)一個(gè)記錄一次,假設(shè)粒子是按平均率為每分鐘四個(gè)的poisson過(guò)程到達(dá),令T是兩個(gè)相繼被記錄的粒子之間的時(shí)間間隔(以分鐘為單位),試求(1)T的概率密度函數(shù);(2)P{T≥1}.解設(shè)X1,X2

···為被記錄的粒子之間的時(shí)間間隔,則它們是相互獨(dú)立且同分布的。只要求出X1的分布,即為T的分布。由于{X1>t}等價(jià)于在時(shí)間[0,t]內(nèi)至多到達(dá)一個(gè)粒子,故有P{X1>t}=P{N(t)≤1}=P{N(t)=0}+P{N(t)=1}=e-4t+4te-4tFX1(t)=P{X1≤t}=1-P{X1>t}=1-e-4t-4te-4t,t>0

fT(t)=fx1(t)=16te-4t,t>0P{T≥1}2.設(shè)電話總機(jī)在(0,t]內(nèi)接到電話呼叫次數(shù)X(t)是具有強(qiáng)度(每分鐘)為λ的泊松過(guò)程,求(1)兩分鐘內(nèi)接到3次呼叫的概率;(2)“第二分鐘收到第三次呼叫”的概率。(3)若λ=2,求t時(shí)刻到X(t)+1時(shí)刻的概率密度。

解(1)根據(jù)定義2(2)正確答案:(3)設(shè)W(t)是t時(shí)刻到X(t)+1時(shí)刻的時(shí)間間隔{W(t)>x}等價(jià)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論