高考數(shù)學一輪復習 板塊命題點專練(十四)統(tǒng)計與概率 文(含解析)蘇教版-蘇教版高三數(shù)學試題_第1頁
高考數(shù)學一輪復習 板塊命題點專練(十四)統(tǒng)計與概率 文(含解析)蘇教版-蘇教版高三數(shù)學試題_第2頁
高考數(shù)學一輪復習 板塊命題點專練(十四)統(tǒng)計與概率 文(含解析)蘇教版-蘇教版高三數(shù)學試題_第3頁
高考數(shù)學一輪復習 板塊命題點專練(十四)統(tǒng)計與概率 文(含解析)蘇教版-蘇教版高三數(shù)學試題_第4頁
高考數(shù)學一輪復習 板塊命題點專練(十四)統(tǒng)計與概率 文(含解析)蘇教版-蘇教版高三數(shù)學試題_第5頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

板塊命題點專練(十四)統(tǒng)計與概率命題點一統(tǒng)計1.(2018·江蘇高考)已知5位裁判給某運動員打出的分數(shù)的莖葉圖如圖所示,那么這5位裁判打出的分數(shù)的平均數(shù)為________.解析:這5位裁判打出的分數(shù)分別是89,89,90,91,91,因此這5位裁判打出的分數(shù)的平均數(shù)為eq\f(89+89+90+91+91,5)=90.答案:902.(2016·江蘇高考)已知一組數(shù)據(jù)4.7,4.8,5.1,5.4,5.5,則該組數(shù)據(jù)的方差是________.解析:5個數(shù)的平均數(shù)eq\x\to(x)=eq\f(4.7+4.8+5.1+5.4+5.5,5)=5.1,所以它們的方差s2=eq\f(1,5)[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.13.(2017·江蘇高考)某工廠生產(chǎn)甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為200,400,300,100件.為檢驗產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進行檢驗,則應從丙種型號的產(chǎn)品中抽取________件.解析:因為丙種型號的產(chǎn)品在所有產(chǎn)品中所占比例為eq\f(300,200+400+300+100)=eq\f(3,10),所以應從丙種型號的產(chǎn)品中抽取60×eq\f(3,10)=18(件).答案:184.(2018·全國卷Ⅰ)某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)頻數(shù)13249265使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)頻數(shù)151310165(1)在下圖中作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖;(2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率;(3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)解:(1)頻率分布直方圖如圖所示.(2)根據(jù)頻率分布直方圖知,該家庭使用節(jié)水龍頭后50天日用水量小于0.35m3的頻率為0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率的估計值為0.48.(3)該家庭未使用節(jié)水龍頭50天日用水量的平均數(shù)為eq\x\to(x)1=eq\f(1,50)×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.該家庭使用了節(jié)水龍頭后50天日用水量的平均數(shù)為eq\x\to(x)2=eq\f(1,50)×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估計使用節(jié)水龍頭后,一年可節(jié)省水(0.48-0.35)×365=47.45(m3).命題點二古典概型、幾何概型1.(2018·江蘇高考)某興趣小組有2名男生和3名女生,現(xiàn)從中任選2名學生去參加活動,則恰好選中2名女生的概率為________.解析:設2名男生為a,b,3名女生為A,B,C,從中選出2人的情況有(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10種,而都是女生的情況有(A,B),(A,C),(B,C),共3種,故所求概率為eq\f(3,10).答案:eq\f(3,10)2.(2018·上海高考)有編號互不相同的五個砝碼,其中5克、3克、1克砝碼各一個,2克砝碼兩個,從中隨機選取三個,則這三個砝碼的總質(zhì)量為9克的概率是________(結(jié)果用最簡分數(shù)表示)解析:從5個砝碼隨機選取三個,共有10種選取方法,總質(zhì)量為9克的情況有2種,因此所求概率為eq\f(2,10)=eq\f(1,5).答案:eq\f(1,5)3.(2016·江蘇高考)將一顆質(zhì)地均勻的骰子(一種各個面上分別標有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點數(shù)之和小于10的概率是________.解析:將一顆質(zhì)地均勻的骰子先后拋擲2次,所有等可能的結(jié)果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36種情況.設事件A=“出現(xiàn)向上的點數(shù)之和小于10”,其對立事件eq\x\to(A)=“出現(xiàn)向上的點數(shù)之和大于或等于10”,eq\x\to(A)包含的可能結(jié)果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6種情況.所以由古典概型的概率公式,得P(eq\x\to(A))=eq\f(6,36)=eq\f(1,6),所以P(A)=1-eq\f(1,6)=eq\f(5,6).答案:eq\f(5,6)4.(2015·江蘇高考)袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球.從中一次隨機摸出2只球,則這2只球顏色不同的概率為________.解析:設4只球分別為白、紅、黃1、黃2,從中一次隨機摸出2只球,所有基本事件為(白,紅)、(白,黃1)、(白,黃2)、(紅,黃1)、(紅,黃2)、(黃1,黃2),共6個,顏色不同的有5個,所以2只球顏色不同的概率為eq\f(5,6).答案:eq\f(5,6)5.(2017·江蘇高考)記函數(shù)f(x)=eq\r(6+x-x2)的定義域為D.在區(qū)間[-4,5]上隨機取一個數(shù)x,則x∈D的概率是________.解析:令6+x-x2≥0,解得-2≤x≤3,即定義域D=[-2,3],在區(qū)間[-4,5]上隨機取一個數(shù)x,則x∈D的概率P=eq\f(3--2,5--4)=eq\f(5,9).答案:eq\f(5,9)6.(2016·全國卷Ⅱ改編)某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為________.解析:如圖,若該行人在時間段AB的某一時刻來到該路口,則該行人至少等待15秒才出現(xiàn)綠燈.AB長度為40-15=25,由幾何概型的概率公式知,至少需要等待15秒才出現(xiàn)綠燈的概率為eq\f(40-15,40)=eq\f(5,8).答案:eq\f(5,8)7.(2018·天津高考)已知某校甲、乙、丙三個年級的學生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學去某敬老院參加獻愛心活動.(1)應從甲、乙、丙三個年級的學生志愿者中分別抽取多少人?(2)設抽出的7名同學分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機抽取2名同學承擔敬老院的衛(wèi)生工作.①試用所給字母列舉出所有可能的抽取結(jié)果;②設M為事件“抽取的2名同學來自同一年級”,求事件M發(fā)生的概率.解:(1)因為甲、乙、丙三個年級的學生志愿者人數(shù)之比為3∶2∶2,由于采用分層抽樣的方法從中抽取7名同學,所以應從甲、乙、丙三個年級的學生志愿者中分別抽取3人,2人,2人.(2)①從抽取的7名同學中隨機抽取2名同學的所有可能結(jié)果為{A,B},{A,C},{A,D},{A,E},{A,F(xiàn)},{A,G},{B,C},{B,D},{B,E},{B,F(xiàn)},{B,G},{C,D},{C,E},{C,F(xiàn)},{C,G},{D,E},{D,F(xiàn)},{D,G},{E,F(xiàn)},{E,G},{F,G},共21種.②由①,不妨設抽出的7名同學中,來自甲年級的是A,B,C,來自乙年級的是D,E,來自丙年級的是F,G,則從抽出的7名同學中隨機抽取的2名同學來自同一年級的所有可能結(jié)果為{A,B},{A,C},{B,C},{D,E},{F,G},共5種.所以事件M發(fā)生的概率P(M)=eq\f(5,21).8.(2018·北京高考)電影公司隨機收集了電影的有關數(shù)據(jù),經(jīng)分類整理得到下表:電影類型第一類第二類第三類第四類第五類第六類電影部數(shù)14050300200800510好評率0.40.20.150.250.20.1好評率是指:一類電影中獲得好評的部數(shù)與該類電影的部數(shù)的比值.(1)從電影公司收集的電影中隨機選取1部,求這部電影是獲得好評的第四類電影的概率.(2)隨機選取1部電影,估計這部電影沒有獲得好評的概率.(3)電影公司為增加投資回報,擬改變投資策略,這將導致不同類型電影的好評率發(fā)生變化.假設表格中只有兩類電影的好評率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評率增加0.1,哪類電影的好評率減少0.1,使得獲得好評的電影總部數(shù)與樣本中的電影總部數(shù)的比值達到最大?(只需寫出結(jié)論)解:(1)由題意知,樣本中電影的總部數(shù)是140+50+300+200+800+510=2000,獲得好評的第四類電

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論