中考數(shù)學(xué)一輪復(fù)習(xí)??碱}型突破練習(xí)專題27 四邊形綜合(解析版)_第1頁(yè)
中考數(shù)學(xué)一輪復(fù)習(xí)??碱}型突破練習(xí)專題27 四邊形綜合(解析版)_第2頁(yè)
中考數(shù)學(xué)一輪復(fù)習(xí)??碱}型突破練習(xí)專題27 四邊形綜合(解析版)_第3頁(yè)
中考數(shù)學(xué)一輪復(fù)習(xí)??碱}型突破練習(xí)專題27 四邊形綜合(解析版)_第4頁(yè)
中考數(shù)學(xué)一輪復(fù)習(xí)??碱}型突破練習(xí)專題27 四邊形綜合(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩66頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題27四邊形綜合【考查題型】【知識(shí)要點(diǎn)】四邊形之間的從屬關(guān)系:考查題型一中點(diǎn)四邊形典例1.(2022秋·廣東佛山·九年級(jí)??茧A段練習(xí))若順次連接四邊形ABCD各邊的中點(diǎn)所得四邊形是菱形.則四邊形ABCD一定是(

)A.菱形 B.對(duì)角線互相垂直的四邊形C.矩形 D.對(duì)角線相等的四邊形【答案】D【分析】根據(jù)三角形的中位線定理得到EH∥FG,EF=FG,EF=SKIPIF1<0BD,要是四邊形為菱形,得出EF=EH,即可得到答案.【詳解】解:∵E,F(xiàn),G,H分別是邊AD,AB,CB,DC的中點(diǎn),∴EH=SKIPIF1<0AC,EH∥AC,F(xiàn)G=SKIPIF1<0AC,F(xiàn)G∥AC,EF=SKIPIF1<0BD,∴EH∥FG,EF=FG,∴四邊形EFGH是平行四邊形,假設(shè)AC=BD,∵EH=SKIPIF1<0AC,EF=SKIPIF1<0BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選:D.【點(diǎn)睛】題目主要考查中位線的性質(zhì)及菱形的判定和性質(zhì),理解題意,熟練掌握運(yùn)用三角形中位線的性質(zhì)是解題關(guān)鍵.變式1-1.(2022·四川德陽(yáng)·統(tǒng)考中考真題)如圖,在四邊形SKIPIF1<0中,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0邊上的中點(diǎn),則下列結(jié)論一定正確的是(

)A.四邊形SKIPIF1<0是矩形B.四邊形SKIPIF1<0的內(nèi)角和小于四邊形SKIPIF1<0的內(nèi)角和C.四邊形SKIPIF1<0的周長(zhǎng)等于四邊形SKIPIF1<0的對(duì)角線長(zhǎng)度之和D.四邊形SKIPIF1<0的面積等于四邊形SKIPIF1<0面積的SKIPIF1<0【答案】C【分析】連接SKIPIF1<0,根據(jù)三角形中位線的性質(zhì)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,繼而逐項(xiàng)分析判斷即可求解.【詳解】解:連接SKIPIF1<0,設(shè)交于點(diǎn)SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0邊上的中點(diǎn),SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0A.四邊形SKIPIF1<0是平行四邊形,故該選項(xiàng)不正確,不符合題意;B.四邊形SKIPIF1<0的內(nèi)角和等于于四邊形SKIPIF1<0的內(nèi)角和,都為360°,故該選項(xiàng)不正確,不符合題意;C.四邊形SKIPIF1<0的周長(zhǎng)等于四邊形SKIPIF1<0的對(duì)角線長(zhǎng)度之和,故該選項(xiàng)正確,符合題意;D.四邊形SKIPIF1<0的面積等于四邊形SKIPIF1<0面積的SKIPIF1<0,故該選項(xiàng)不正確,不符合題意;故選C【點(diǎn)睛】本題考查了中點(diǎn)四邊形的性質(zhì),三角形中位線的性質(zhì),掌握三角形中位線的性質(zhì)是解題的關(guān)鍵.變式1-2(2022春·福建福州·八年級(jí)福建省福州外國(guó)語(yǔ)學(xué)校??计谥校┤鐖D,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是()A.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC=BD時(shí),四邊形EFGH為菱形B.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC⊥BD時(shí),四邊形EFGH為矩形C.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形D.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH不可能為菱形【答案】D【分析】根據(jù)連接四邊形各邊中點(diǎn)所得的四邊形必為平行四邊形,根據(jù)中點(diǎn)四邊形的性質(zhì)進(jìn)行判斷,即可求解【詳解】解:A.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC=BD時(shí),EF=FG=GH=HE,故四邊形EFGH為菱形,故A正確;B.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC⊥BD時(shí),∠EFG=∠FGH=∠GHE=90°,故四邊形EFGH為矩形,故B正確;C.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),EF∥HG,EF=HG,故四邊形EFGH為平行四邊形,故C正確;D.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH可能為菱形,故D錯(cuò)誤;故選D.變式1-3.(2022春·河北廊坊·八年級(jí)??计谥校┤鐖D,四邊形ABCD四邊的中點(diǎn)分別為E,F(xiàn),G,H,對(duì)角線AC與BD相交于點(diǎn)O,若四邊形EFGH的周長(zhǎng)是3,則AC+BD的長(zhǎng)為(

)A.3 B.6 C.9 D.12【答案】A【分析】先由三角形的中位線定理推知四邊形EFGH是平行四邊形,然后求解即可.【詳解】解:如圖,∵E、F、G、H分別是線段AB、BC、CD、AD的中點(diǎn),∴EH、FG分別是△ABD、△BCD的中位線,EF、HG分別是△ACD、△ABC的中位線,根據(jù)三角形的中位線的性質(zhì)知:EF∥AC,GH∥AC且EF=GH=SKIPIF1<0AC,EH=FG=SKIPIF1<0BD,∴四邊形EFGH是平行四邊形,∵四邊形EFGH的周長(zhǎng)是3,即EF+GH+EH+FG=3,∴AC+BD=3,故選:A.【點(diǎn)睛】本題主要考查中點(diǎn)四邊形,解題時(shí),利用三角形中位線定理判定四邊形EFGH是平行四邊形是解題的關(guān)鍵.變式1-4.(2022秋·九年級(jí)單元測(cè)試)如圖,在四邊形SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),若SKIPIF1<0,SKIPIF1<0,則四邊形SKIPIF1<0的面積是______.【答案】12【分析】根據(jù)三角形中位線定理、矩形的判定定理得到四邊形SKIPIF1<0為矩形,根據(jù)矩形的面積公式計(jì)算,得到答案.【詳解】解:∵點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,∴SKIPIF1<0,∴平行四邊形SKIPIF1<0為矩形,∴SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】此題考查了中點(diǎn)四邊形,解題的關(guān)鍵是掌握三角形中位線定理、矩形的判定定理.變式1-5.(2022秋·九年級(jí)課時(shí)練習(xí))如圖是一張菱形紙板,順次連接各邊中點(diǎn)得到矩形,再連接矩形對(duì)角線.將一個(gè)飛鏢隨機(jī)投擲到大菱形紙板上,則飛鏢落在陰影區(qū)域的概率是__.【答案】SKIPIF1<0##0.25【分析】如圖,連接EG、FH,設(shè)FH=2a,EG=2b,可得SKIPIF1<0,再得到四邊形MOPN是矩形,可得SKIPIF1<0,再根據(jù)概率公式,即可求解.【詳解】解:如圖,連接EG、FH,設(shè)FH=2a,EG=2b,∵四邊形EFGH是菱形,∴SKIPIF1<0,EG⊥FH,∵點(diǎn)M、O、P、N分別為菱形EFGH各邊的中點(diǎn),∴SKIPIF1<0,OP∥FH,MN∥FH,MO∥EG,PN∥EG,∴四邊形MOPN是平行四邊形,∵EG⊥FH,∴MO⊥OP,∴四邊形MOPN是矩形,∴SKIPIF1<0,∴SKIPIF1<0,∴飛鏢落在陰影區(qū)域的概率是SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】本題主要考查了求概率,菱形的性質(zhì),矩形的判定和性質(zhì),根據(jù)題意得到SKIPIF1<0,SKIPIF1<0是解題的關(guān)鍵.變式1-6.(2022·山東濟(jì)南·模擬預(yù)測(cè))如圖,在四邊形ABCD中,AC=BD,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),且EG、FH交于點(diǎn)O.若AC=4,則EG2+FH2=______.【答案】16【分析】根據(jù)三角形的中位線定理和菱形的判定,可得順次連接對(duì)角線相等的四邊形各邊中點(diǎn)所得四邊形是菱形;根據(jù)菱形的性質(zhì)得到EG⊥HF,且EG=2OE,F(xiàn)H=2OH.在Rt△OEH中,根據(jù)勾股定理得到OE2+OH2=EH2=4,再根據(jù)等式的性質(zhì),在等式的兩邊同時(shí)乘以4,根據(jù)4=22,把等式進(jìn)行變形,并把EG=2OE,F(xiàn)H=2OH代入變形后的等式中,即可求出EG2+FH2的值.【詳解】∵E、F、G、H分別是線段AB、BC、CD、AD的中點(diǎn),∴EH、FG分別是△ABD、△BCD的中位線,EF、HG分別是△ABC、△ACD的中位線,根據(jù)三角形的中位線的性質(zhì)知,EH=FGSKIPIF1<0BD,EF=HGSKIPIF1<0AC.又∵AC=BD,∴EH=FG=EF=HG,∴四邊形EFGH是菱形,∴EG⊥FH,EG=2OE,F(xiàn)H=2OH.在Rt△OEH中,根據(jù)勾股定理得:OE2+OH2=EH2=4,等式兩邊同時(shí)乘以4得:4OE2+4OH2=4×4=16,∴(2OE)2+(2OH)2=16,即EG2+FH2=16.故答案為16.【點(diǎn)睛】本題考查了三角形中位線定理和菱形的判定方法,題目比較典型,又有綜合性,難度不大.變式1-7.(2022春·山東德州·八年級(jí)統(tǒng)考期末)如圖,在四邊形ABCD中,AC=BD=6,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則EG2+FH2=______.【答案】36【分析】連接EF,F(xiàn)G,GH,EH,由E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),得到EH,EF,F(xiàn)G,GH分別是△ABD,△ABC,△BCD,△ACD的中位線,根據(jù)三角形中位線定理得到EH,F(xiàn)G等于BD的一半,EF,GH等于AC的一半,由AC=BD=6,得到EH=EF=GH=FG=3,根據(jù)四邊都相等的四邊形是菱形,得到EFGH為菱形,然后根據(jù)菱形的性質(zhì)得到EG⊥HF,且EG=2OE,F(xiàn)H=2OH,在Rt△OEH中,根據(jù)勾股定理得到OE2+OH2=EH2=9,再根據(jù)等式的性質(zhì),在等式的兩邊同時(shí)乘以4,根據(jù)4=22,把等式進(jìn)行變形,并把EG=2OE,F(xiàn)H=2OH代入變形后的等式中,即可求出EG2+FH2的值【詳解】如圖,連接EF,F(xiàn)G,GH,EH,∵E、H分別是AB、DA的中點(diǎn),∴EH是△ABD的中位線,∴EH=SKIPIF1<0BD=3,同理可得EF,F(xiàn)G,GH分別是△ABC,△BCD,△ACD的中位線,∴EF=GH=SKIPIF1<0AC=3,F(xiàn)G=SKIPIF1<0BD=3,∴EH=EF=GH=FG=3,∴四邊形EFGH為菱形,∴EG⊥HF,且垂足為O,∴EG=2OE,F(xiàn)H=2OH,在Rt△OEH中,根據(jù)勾股定理得:OE2+OH2=EH2=9,等式兩邊同時(shí)乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.故答案為36.【點(diǎn)睛】此題考查了菱形的判定與性質(zhì),勾股定理,三角形的中位線定理以及等式的基本性質(zhì),本題的關(guān)鍵是連接EF,F(xiàn)G,GH,EH,得到四邊形EFGH為菱形,根據(jù)菱形的性質(zhì)得到EG⊥HF,建立直角三角形,利用勾股定理來解決問題.考查題型二特殊四邊形有關(guān)的動(dòng)點(diǎn)問題典例2.(2022·遼寧錦州·中考真題)如圖,四邊形SKIPIF1<0是邊長(zhǎng)為SKIPIF1<0的正方形,點(diǎn)E,點(diǎn)F分別為邊SKIPIF1<0,SKIPIF1<0中點(diǎn),點(diǎn)O為正方形的中心,連接SKIPIF1<0,點(diǎn)P從點(diǎn)E出發(fā)沿SKIPIF1<0運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿SKIPIF1<0運(yùn)動(dòng),兩點(diǎn)運(yùn)動(dòng)速度均為SKIPIF1<0,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)F時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,下列圖像能正確反映出S與t的函數(shù)關(guān)系的是(

)A.B.C.D.【答案】D【分析】分0≤t≤1和1<t≤2兩種情形,確定解析式,判斷即可.【詳解】當(dāng)0≤t≤1時(shí),∵正方形ABCD的邊長(zhǎng)為2,點(diǎn)O為正方形的中心,∴直線EO垂直BC,∴點(diǎn)P到直線BC的距離為2-t,BQ=t,∴S=SKIPIF1<0;當(dāng)1<t≤2時(shí),∵正方形ABCD的邊長(zhǎng)為2,點(diǎn)F分別為邊SKIPIF1<0,SKIPIF1<0中點(diǎn),點(diǎn)O為正方形的中心,∴直線OF∥BC,∴點(diǎn)P到直線BC的距離為1,BQ=t,∴S=SKIPIF1<0;故選D.【點(diǎn)睛】本題考查了正方形的性質(zhì),二次函數(shù)的解析式,一次函數(shù)解析式,正確確定面積,從而確定解析式是解題的關(guān)鍵.變式2-1.(2021·浙江紹興·統(tǒng)考中考真題)如圖,菱形ABCD中,SKIPIF1<0,點(diǎn)P從點(diǎn)B出發(fā),沿折線SKIPIF1<0方向移動(dòng),移動(dòng)到點(diǎn)D停止.在SKIPIF1<0形狀的變化過程中,依次出現(xiàn)的特殊三角形是(

)A.直角三角形→等邊三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等邊三角形C.直角三角形→等邊三角形→直角三角形→等腰三角形D.等腰三角形→等邊三角形→直角三角形→等腰三角形【答案】C【分析】SKIPIF1<0是特殊三角形,取決于點(diǎn)P的某些特殊位置,按其移動(dòng)方向,逐一判斷即可.【詳解】解:連接AC,BD,如圖所示.∵四邊形ABCD是菱形,∴AB=BC=CD=DA,∠D=∠B.∵∠B=60°,∴∠D=∠B=60°.∴SKIPIF1<0和SKIPIF1<0都是等邊三角形.點(diǎn)P在移動(dòng)過程中,依次共有四個(gè)特殊位置:(1)當(dāng)點(diǎn)P移動(dòng)到BC邊的中點(diǎn)時(shí),記作SKIPIF1<0.∵SKIPIF1<0是等邊三角形,SKIPIF1<0是BC的中點(diǎn),∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0是直角三角形.(2)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),記作SKIPIF1<0.此時(shí),SKIPIF1<0是等邊三角形;(3)當(dāng)點(diǎn)P移動(dòng)到CD邊的中點(diǎn)時(shí),記為SKIPIF1<0.∵SKIPIF1<0和SKIPIF1<0都是等邊三角形,∴SKIPIF1<0.∴SKIPIF1<0是直角三角形.(4)當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),記作SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0是等腰三角形.綜上,SKIPIF1<0形狀的變化過程中,依次出現(xiàn)的特殊三角形是:直角三角形→等邊三角形→直角三角形→等腰三角形.故選:C【點(diǎn)睛】本題考查了菱形的性質(zhì)、直角三角形的判定、等腰三角形的判定、等邊三角形的性質(zhì)與判定等知識(shí)點(diǎn),熟知特殊三角形的判定方法是解題的關(guān)鍵.變式2-2.(2021·四川眉山·統(tǒng)考中考真題)如圖,在菱形SKIPIF1<0中,SKIPIF1<0,對(duì)角線SKIPIF1<0、SKIPIF1<0相交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),則SKIPIF1<0的最小值是______.【答案】SKIPIF1<0【分析】過M點(diǎn)作MH垂直BC于H點(diǎn),與OB的交點(diǎn)為P點(diǎn),此時(shí)SKIPIF1<0的長(zhǎng)度最小為MH,再算出MC的長(zhǎng)度,在直角三角形MPC中利用三角函數(shù)即可解得MH【詳解】過M點(diǎn)作MH垂直BC于H點(diǎn),與OB的交點(diǎn)為P點(diǎn),此時(shí)SKIPIF1<0的長(zhǎng)度最小∵菱形SKIPIF1<0中,SKIPIF1<0∴AB=BC=AC=10,△ABC為等邊三角形∴∠PBC=30°,∠ACB=60°∴在直角△PBH中,∠PBH=30°∴PH=SKIPIF1<0∴此時(shí)SKIPIF1<0得到最小值,SKIPIF1<0∵AC=10,AM=3,∴MC=7又∠MPC=60°∴MH=MCsin60°=SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】本題主要考查了菱形的性質(zhì)與三角函數(shù),能夠找到最小值時(shí)的P點(diǎn)是解題關(guān)鍵.變式2-3.(2021·湖南衡陽(yáng)·統(tǒng)考中考真題)如圖1,菱形SKIPIF1<0的對(duì)角線SKIPIF1<0與SKIPIF1<0相交于點(diǎn)O,P、Q兩點(diǎn)同時(shí)從O點(diǎn)出發(fā),以1厘米/秒的速度在菱形的對(duì)角線及邊上運(yùn)動(dòng).點(diǎn)P的運(yùn)動(dòng)路線為SKIPIF1<0,點(diǎn)Q的運(yùn)動(dòng)路線為SKIPIF1<0.設(shè)運(yùn)動(dòng)的時(shí)間為x秒,P、Q間的距離為y厘米,y與x的函數(shù)關(guān)系的圖象大致如圖2所示,當(dāng)點(diǎn)P在SKIPIF1<0段上運(yùn)動(dòng)且P、Q兩點(diǎn)間的距離最短時(shí),P、Q兩點(diǎn)的運(yùn)動(dòng)路程之和為__________厘米.【答案】SKIPIF1<0【分析】四邊形SKIPIF1<0是菱形,由圖象可得AC和BD的長(zhǎng),從而求出OC、OB和SKIPIF1<0.當(dāng)點(diǎn)P在SKIPIF1<0段上運(yùn)動(dòng)且P、Q兩點(diǎn)間的距離最短時(shí),此時(shí)SKIPIF1<0連線過O點(diǎn)且垂直于SKIPIF1<0.根據(jù)三角函數(shù)和已知線段長(zhǎng)度,求出P、Q兩點(diǎn)的運(yùn)動(dòng)路程之和.【詳解】由圖可知,SKIPIF1<0(厘米),∵四邊形SKIPIF1<0為菱形∴SKIPIF1<0(厘米)∴SKIPIF1<0P在SKIPIF1<0上時(shí),Q在SKIPIF1<0上,SKIPIF1<0距離最短時(shí),SKIPIF1<0連線過O點(diǎn)且垂直于SKIPIF1<0.此時(shí),P、Q兩點(diǎn)運(yùn)動(dòng)路程之和SKIPIF1<0∵SKIPIF1<0(厘米)∴SKIPIF1<0(厘米)故答案為SKIPIF1<0.【點(diǎn)睛】本題主要考查菱形的性質(zhì)和三角函數(shù).解題的關(guān)鍵在于從圖象中找到菱形對(duì)角線的長(zhǎng)度.變式2-4.(2021·四川宜賓·統(tǒng)考中考真題)如圖,在矩形ABCD中,AD=SKIPIF1<0AB,對(duì)角線相交于點(diǎn)O,動(dòng)點(diǎn)M從點(diǎn)B向點(diǎn)A運(yùn)動(dòng)(到點(diǎn)A即停止),點(diǎn)N是AD上一動(dòng)點(diǎn),且滿足∠MON=90°,連結(jié)MN.在點(diǎn)M、N運(yùn)動(dòng)過程中,則以下結(jié)論中,①點(diǎn)M、N的運(yùn)動(dòng)速度不相等;②存在某一時(shí)刻使SKIPIF1<0;③SKIPIF1<0逐漸減小;④SKIPIF1<0.正確的是________.(寫出所有正確結(jié)論的序號(hào))【答案】①②③④.【分析】先根據(jù)矩形的性質(zhì)與AD=SKIPIF1<0AB,得到∠ADB=30°,∠ABD=60°,AB=AO=BO,再分類討論,當(dāng)點(diǎn)M運(yùn)動(dòng)到AB的中點(diǎn)時(shí),此時(shí)點(diǎn)N為AD的中點(diǎn),則:SKIPIF1<0,SKIPIF1<0從而點(diǎn)M、N的運(yùn)動(dòng)速度不同,當(dāng)點(diǎn)M運(yùn)動(dòng)到AB的中點(diǎn)時(shí),SKIPIF1<0,由AM減小的速度比AN增大的速度快,則SKIPIF1<0逐漸減小,當(dāng)點(diǎn)M在AB的中點(diǎn)時(shí),才滿足SKIPIF1<0,得出結(jié)論.【詳解】解:∵AD=SKIPIF1<0AB,∴tan∠ADB=SKIPIF1<0,∴∠ADB=30°,∠ABD=60°,∵點(diǎn)O為BD的中點(diǎn),∴AB=AO=BO,設(shè)AB=1,則AD=SKIPIF1<0,BD=2.①當(dāng)點(diǎn)M與點(diǎn)B重合時(shí),點(diǎn)N是BD的垂直平分線與AD的交點(diǎn),令A(yù)N=x,則BN=DN=SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴AN=SKIPIF1<0,當(dāng)點(diǎn)M運(yùn)動(dòng)到AB的中點(diǎn)時(shí),此時(shí)點(diǎn)N為AD的中點(diǎn),則:SKIPIF1<0,從而點(diǎn)M、N的運(yùn)動(dòng)速度不同,故①說法正確,符合題意;②當(dāng)點(diǎn)M運(yùn)動(dòng)到AB的中點(diǎn)時(shí),SKIPIF1<0,故②說法正確,符合題意;③由①得到,AM減小的速度比AN增大的速度快,則SKIPIF1<0逐漸減小,故③說法正確,符合題意;如圖,延長(zhǎng)MO交CD于M',∵∠MOB=∠M'OD,OB=OD,∠DBA=∠BDC,∴△OMB≌△OM'D(ASA),∴BM=DM',OM=OM',連接NM',∵NO⊥MM',則MN=NM',∵NM'2=DN2+DM'2,∴MN2=BM2+DN2,故④正確,故答案為:①②③④.【點(diǎn)睛】本題考查了矩形的性質(zhì)、動(dòng)點(diǎn)問題,解題關(guān)鍵在于確定特殊情況,求出兩點(diǎn)的運(yùn)動(dòng)路程,確定邊之間的關(guān)系,得出結(jié)論.變式2-5.(2022·天津·統(tǒng)考中考真題)將一個(gè)矩形紙片SKIPIF1<0放置在平面直角坐標(biāo)系中,點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0,點(diǎn)P在邊SKIPIF1<0上(點(diǎn)P不與點(diǎn)O,C重合),折疊該紙片,使折痕所在的直線經(jīng)過點(diǎn)P,并與x軸的正半軸相交于點(diǎn)Q,且SKIPIF1<0,點(diǎn)O的對(duì)應(yīng)點(diǎn)SKIPIF1<0落在第一象限.設(shè)SKIPIF1<0.(1)如圖①,當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的大小和點(diǎn)SKIPIF1<0的坐標(biāo);(2)如圖②,若折疊后重合部分為四邊形,SKIPIF1<0分別與邊SKIPIF1<0相交于點(diǎn)E,F(xiàn),試用含有t的式子表示SKIPIF1<0的長(zhǎng),并直接寫出t的取值范圍;(3)若折疊后重合部分的面積為SKIPIF1<0,則t的值可以是___________(請(qǐng)直接寫出兩個(gè)不同的值即可).【答案】(1)SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0(2)SKIPIF1<0,其中t的取值范圍是SKIPIF1<0(3)3,SKIPIF1<0.(答案不唯一,滿足SKIPIF1<0即可)【分析】(1)先根據(jù)折疊的性質(zhì)得SKIPIF1<0,即可得出SKIPIF1<0,作SKIPIF1<0,然后求出SKIPIF1<0和OH,可得答案;(2)根據(jù)題意先表示SKIPIF1<0,再根據(jù)SKIPIF1<0,表示QE,然后根據(jù)SKIPIF1<0表示即可,再求出取值范圍;(3)求出t=3時(shí)的重合部分的面積,可得從t=3之后重合部分的面積始終是SKIPIF1<0,再求出P與C重合時(shí)t的值可得t的取值范圍,問題得解.【詳解】(1)在SKIPIF1<0中,由SKIPIF1<0,得SKIPIF1<0.根據(jù)折疊,知SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.如圖,過點(diǎn)O′作SKIPIF1<0,垂足為H,則SKIPIF1<0.∴在SKIPIF1<0中,得SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0.由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,SKIPIF1<0.∴點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.(2)∵點(diǎn)SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0.同(1)知,SKIPIF1<0,SKIPIF1<0.∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,得SKIPIF1<0.∴SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0.如圖,當(dāng)點(diǎn)O′與AB重合時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得t=2,∴t的取值范圍是SKIPIF1<0;(3)3,SKIPIF1<0.(答案不唯一,滿足SKIPIF1<0即可)當(dāng)點(diǎn)Q與點(diǎn)A重合時(shí),SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0.∴t=3時(shí),重合部分的面積是SKIPIF1<0,從t=3之后重合部分的面積始終是SKIPIF1<0,當(dāng)P與C重合時(shí),OP=6,∠OPQ=30°,此時(shí)t=OP·tan30°=SKIPIF1<0,由于P不能與C重合,故SKIPIF1<0,所以SKIPIF1<0都符合題意.【點(diǎn)睛】這是一道關(guān)于動(dòng)點(diǎn)的幾何綜合問題,考查了折疊的性質(zhì),勾股定理,含30°直角三角形的性質(zhì),矩形的性質(zhì),解直角三角形等.變式2-6.(2021·廣東廣州·統(tǒng)考中考真題)如圖,在菱形ABCD中,SKIPIF1<0,SKIPIF1<0,點(diǎn)E為邊AB上一個(gè)動(dòng)點(diǎn),延長(zhǎng)BA到點(diǎn)F,使SKIPIF1<0,且CF、DE相交于點(diǎn)G(1)當(dāng)點(diǎn)E運(yùn)動(dòng)到AB中點(diǎn)時(shí),證明:四邊形DFEC是平行四邊形;(2)當(dāng)SKIPIF1<0時(shí),求AE的長(zhǎng);(3)當(dāng)點(diǎn)E從點(diǎn)A開始向右運(yùn)動(dòng)到點(diǎn)B時(shí),求點(diǎn)G運(yùn)動(dòng)路徑的長(zhǎng)度.【答案】(1)見解析;(2)SKIPIF1<0;(3)SKIPIF1<0.【分析】(1)根據(jù)E為AB中點(diǎn)可得SKIPIF1<0,再由菱形的性質(zhì)推出CD∥AB,SKIPIF1<0,則SKIPIF1<0,即可證明結(jié)論;(2)過點(diǎn)C作CH⊥AB交FB的延長(zhǎng)線于點(diǎn)H,利用菱形及直角三角形的性質(zhì)可求出SKIPIF1<0,并由勾股定理求得SKIPIF1<0,再根據(jù)相似三角形的判定及性質(zhì)可證得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,可表示出SKIPIF1<0,SKIPIF1<0,即可由SKIPIF1<0建立關(guān)于x的方程,求解后可得出AE的長(zhǎng);(3)連接AG并延長(zhǎng)交CD于點(diǎn)M,連接BD交AM于點(diǎn)N,并連接BM,首先由菱形的性質(zhì)得出△ABD為等邊三角形,則SKIPIF1<0,再由CD∥AB,得SKIPIF1<0,SKIPIF1<0,由此可證得SKIPIF1<0,再結(jié)合SKIPIF1<0得出SKIPIF1<0,則由等腰三角形性質(zhì)推出SKIPIF1<0,并分別求出SKIPIF1<0,SKIPIF1<0,最后根據(jù)題意可得點(diǎn)G運(yùn)動(dòng)路徑的長(zhǎng)度為線段AN的長(zhǎng),由平行線分線段成比例性質(zhì)可得出SKIPIF1<0,此題得解.【詳解】(1)證明:∵E為AB中點(diǎn),∴SKIPIF1<0.∴SKIPIF1<0.∵四邊形ABCD是菱形,∴CD∥AB,SKIPIF1<0.∴SKIPIF1<0.∴四邊形DFEC是平行四邊形;(2)解:如圖,過點(diǎn)C作CH⊥AB交FB的延長(zhǎng)線于點(diǎn)H,∵四邊形ABCD是菱形,SKIPIF1<0,∴AD∥BC,SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.則由勾股定理得SKIPIF1<0.∵CD∥AB,∴△CDG∽△FEG.∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0.在Rt△CFH中,由勾股定理得:SKIPIF1<0,∴SKIPIF1<0.解得SKIPIF1<0,SKIPIF1<0(不合題意,舍去).∴AE的長(zhǎng)為SKIPIF1<0;(3)如圖,連接AG并延長(zhǎng)交CD于點(diǎn)M,連接BD交AM于點(diǎn)N,并連接BM,∵四邊形ABCD是菱形,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∴△ABD為等邊三角形.同理可證:△BCD為等邊三角形.∴SKIPIF1<0.∵CD∥AB,∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.則由勾股定理得:SKIPIF1<0,SKIPIF1<0.當(dāng)點(diǎn)E從A出發(fā)運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)G始終在直線AM上運(yùn)動(dòng),運(yùn)動(dòng)軌跡為線段,當(dāng)點(diǎn)E與A重合時(shí),點(diǎn)G與點(diǎn)A重合,當(dāng)點(diǎn)E與B重合時(shí),點(diǎn)G為BD與AM的交點(diǎn)N,∴點(diǎn)G運(yùn)動(dòng)路徑的長(zhǎng)度為線段AN的長(zhǎng),∵CD∥AB,∴SKIPIF1<0.∴SKIPIF1<0.∴點(diǎn)G運(yùn)動(dòng)路徑的長(zhǎng)度為SKIPIF1<0.【點(diǎn)睛】此題屬于四邊形的綜合問題,考查了菱形的性質(zhì)、平行四邊形及相似三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握所學(xué)知識(shí)并靈活運(yùn)用所學(xué)知識(shí)是解題的關(guān)鍵.變式2-7(2021·遼寧沈陽(yáng)·統(tǒng)考中考真題)如圖,平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),直線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.線段SKIPIF1<0平行于x軸,交直線SKIPIF1<0于點(diǎn)D,連接SKIPIF1<0,SKIPIF1<0.(1)填空:SKIPIF1<0__________.點(diǎn)A的坐標(biāo)是(__________,__________);(2)求證:四邊形SKIPIF1<0是平行四邊形;(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿對(duì)角線SKIPIF1<0以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)D運(yùn)動(dòng),直到點(diǎn)D為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)D出發(fā),沿對(duì)角線SKIPIF1<0以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止.設(shè)兩個(gè)點(diǎn)的運(yùn)動(dòng)時(shí)間均為t秒.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積是__________.②當(dāng)點(diǎn)P,Q運(yùn)動(dòng)至四邊形SKIPIF1<0為矩形時(shí),請(qǐng)直接寫出此時(shí)t的值.【答案】(1)SKIPIF1<0,5,0;(2)見解析;(3)①12;②SKIPIF1<0或SKIPIF1<0.【分析】(1)代入SKIPIF1<0點(diǎn)坐標(biāo)即可得出SKIPIF1<0值確定直線的解析式,進(jìn)而求出SKIPIF1<0點(diǎn)坐標(biāo)即可;(2)求出SKIPIF1<0點(diǎn)坐標(biāo),根據(jù)SKIPIF1<0,SKIPIF1<0,即可證四邊形SKIPIF1<0是平行四邊形;(3)①作SKIPIF1<0于SKIPIF1<0,設(shè)出SKIPIF1<0點(diǎn)的坐標(biāo),根據(jù)勾股定理計(jì)算出SKIPIF1<0的長(zhǎng)度,根據(jù)運(yùn)動(dòng)時(shí)間求出SKIPIF1<0的長(zhǎng)度即可確定SKIPIF1<0的面積;②根據(jù)對(duì)角線相等確定SKIPIF1<0的長(zhǎng)度,再根據(jù)SKIPIF1<0、SKIPIF1<0的位置分情況計(jì)算出SKIPIF1<0值即可.【詳解】解:(1)SKIPIF1<0直線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,即直線的解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,(2)SKIPIF1<0線段SKIPIF1<0平行于SKIPIF1<0軸,SKIPIF1<0點(diǎn)的縱坐標(biāo)與SKIPIF1<0點(diǎn)一樣,又SKIPIF1<0點(diǎn)在直線SKIPIF1<0上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形;(3)①作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0點(diǎn)在直線SKIPIF1<0上,SKIPIF1<0設(shè)SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由勾股定理,得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0或8(舍去),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,②SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0,SKIPIF1<0運(yùn)動(dòng)至四邊形SKIPIF1<0為矩形時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,綜上,當(dāng)點(diǎn)SKIPIF1<0,SKIPIF1<0運(yùn)動(dòng)至四邊形SKIPIF1<0為矩形時(shí)SKIPIF1<0的值為SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題主要考查一次函數(shù)的性質(zhì),熟練掌握待定系數(shù)法求解析式,平行四邊形的性質(zhì)和矩形的性質(zhì)是解題的關(guān)鍵.變式2-8.(2021·山東青島·統(tǒng)考中考真題)已知:如圖,在矩形SKIPIF1<0和等腰SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),沿SKIPIF1<0方向勻速運(yùn)動(dòng).速度為SKIPIF1<0;同時(shí),點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),沿SKIPIF1<0方向勻速運(yùn)動(dòng),速度為SKIPIF1<0.過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0.分別連接SKIPIF1<0,SKIPIF1<0,設(shè)運(yùn)動(dòng)時(shí)間為SKIPIF1<0.解答下列問題:(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的值;(2)設(shè)五邊形SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0與SKIPIF1<0之間的函數(shù)關(guān)系式;(3)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的值;(4)若SKIPIF1<0與SKIPIF1<0相交于點(diǎn)SKIPIF1<0,分別連接SKIPIF1<0和SKIPIF1<0.在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻SKIPIF1<0,使SKIPIF1<0?若存在,求出SKIPIF1<0的值;若不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)存在,SKIPIF1<0【分析】(1)先證SKIPIF1<0,得SKIPIF1<0代數(shù)計(jì)算即可;(2)如圖2中,過點(diǎn)P作PO⊥QM于點(diǎn)O.證明S=S四邊形DQPM+S△DNQ=SKIPIF1<0(PQ+DH)?QM+SKIPIF1<0QN?ND=SKIPIF1<0(HA+DH)?QM+SKIPIF1<0QN?ND=SKIPIF1<0?AD?QM+SKIPIF1<0QN?ND,可得結(jié)論.(3)如圖3中,延長(zhǎng)NQ交BE于點(diǎn)G.根據(jù)PQ=PM,構(gòu)建方程求解即可.(4)存在.證明△HQW∽△AEW,△MHW∽△PAW,推出SKIPIF1<0,SKIPIF1<0,推出SKIPIF1<0,由此構(gòu)建方程求解即可【詳解】(1)由題意可得,SKIPIF1<0,SKIPIF1<0,在矩形SKIPIF1<0中,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.答:SKIPIF1<0為SKIPIF1<0時(shí),SKIPIF1<0.(2)過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,在等腰SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是矩形,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.答:SKIPIF1<0與SKIPIF1<0的函數(shù)關(guān)系式是SKIPIF1<0.(3)延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,由(1),(2)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,同理可證,四邊形SKIPIF1<0是矩形.∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.答:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(4)由(2)得SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為矩形,∴SKIPIF1<0,且SKIPIF1<0.∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,同理可證SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.答:在運(yùn)動(dòng)的過程中,存在時(shí)刻SKIPIF1<0,使SKIPIF1<0.【點(diǎn)睛】本題屬于四邊形綜合題,考查了矩形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.變式2-9.(2021·廣西來賓·統(tǒng)考中考真題)如圖①,在SKIPIF1<0中,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0是SKIPIF1<0上一動(dòng)點(diǎn)(不與點(diǎn)SKIPIF1<0,SKIPIF1<0重合),在SKIPIF1<0內(nèi)作矩形SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,點(diǎn)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,設(shè)SKIPIF1<0,連接SKIPIF1<0.(1)當(dāng)矩形SKIPIF1<0是正方形時(shí),直接寫出SKIPIF1<0的長(zhǎng);(2)設(shè)SKIPIF1<0的面積為SKIPIF1<0,矩形SKIPIF1<0的面積為SKIPIF1<0,令SKIPIF1<0,求SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)解析式(不要求寫出自變量SKIPIF1<0的取值范圍);(3)如圖②,點(diǎn)SKIPIF1<0是(2)中得到的函數(shù)圖象上的任意一點(diǎn),過點(diǎn)SKIPIF1<0的直線SKIPIF1<0分別與SKIPIF1<0軸正半軸,SKIPIF1<0軸正半軸交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),求SKIPIF1<0面積的最小值,并說明理由.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)6【分析】(1)直接根據(jù)等腰直角三角形性質(zhì)及正方形性質(zhì)可以得出:SKIPIF1<0,進(jìn)一步計(jì)算即可;(2)先根據(jù)等腰直角三角形以及直角三角形得出SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0化簡(jiǎn)即可;(3)設(shè)l:SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0面積的最小時(shí),兩個(gè)函數(shù)圖像僅有一個(gè)交點(diǎn),列出SKIPIF1<0面積的表達(dá)式求解即可.【詳解】解:(1)根據(jù)題意:可知SKIPIF1<0均為等腰直角三角形,則SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴DC=8,∴AC=SKIPIF1<0,∴SKIPIF1<0;(2)∵四邊形EFGH為矩形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)由(2)得P在SKIPIF1<0上,設(shè)l:SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0面積的最小時(shí),兩個(gè)函數(shù)圖像僅有一個(gè)交點(diǎn),令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】本題主要考查正方形性質(zhì),矩形的性質(zhì),勾股定理,特殊角銳角三角函數(shù),反比例函數(shù)與一次函數(shù)綜合問題,能夠根據(jù)題意列出相應(yīng)的方程是解決本題的關(guān)鍵.考查題型三四邊形中線段最值問題典例3.(2022·四川資陽(yáng)·中考真題)如圖,正方形SKIPIF1<0的對(duì)角線交于點(diǎn)O,點(diǎn)E是直線SKIPIF1<0上一動(dòng)點(diǎn).若SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】本題為典型的將軍飲馬模型問題,需要通過軸對(duì)稱,作點(diǎn)A關(guān)于直線BC的對(duì)稱點(diǎn)SKIPIF1<0,再連接SKIPIF1<0,運(yùn)用兩點(diǎn)之間線段最短得到SKIPIF1<0為所求最小值,再運(yùn)用勾股定理求線段SKIPIF1<0的長(zhǎng)度即可.【詳解】解:如圖所示,作點(diǎn)A關(guān)于直線BC的對(duì)稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0,其與BC的交點(diǎn)即為點(diǎn)E,再作SKIPIF1<0交AB于點(diǎn)F,∵A與SKIPIF1<0關(guān)于BC對(duì)稱,∴SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,O,E在同一條線上的時(shí)候和最小,如圖所示,此時(shí)SKIPIF1<0,∵正方形SKIPIF1<0,點(diǎn)O為對(duì)角線的交點(diǎn),∴SKIPIF1<0,∵對(duì)稱,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,故選:D.【點(diǎn)睛】本題為典型的將軍飲馬模型,熟練掌握軸對(duì)稱的性質(zhì),并運(yùn)用勾股定理求線段長(zhǎng)度是解題關(guān)鍵。變式3-1.(2022·全國(guó)·九年級(jí)專題練習(xí))正方形ABCD的邊長(zhǎng)為4,P為BC上的動(dòng)點(diǎn),連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ,則AQ的最小值是(

)A.5 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】A【分析】設(shè)BP=x,CQ=y,根據(jù)△ABP∽△PCQ可得y關(guān)于x的二次函數(shù),利用二次函數(shù)的性質(zhì),求得y的最大值情況,則QD最小,則AQ最?。驹斀狻俊咚倪呅蜛BCD是正方形,∴∠B=∠C=90°,∵PQ⊥AP,∴∠APB+∠QPC=90°,∠APB+∠BAP=90°,∴∠BAP=∠QPC,∴△ABP∽△PCQ,∴SKIPIF1<0,設(shè)BP=x,CQ=y即SKIPIF1<0,∴y=﹣SKIPIF1<0+x=﹣SKIPIF1<0+1(0<x<4),∵﹣SKIPIF1<0<0,∴y有最大值,∴當(dāng)x=2時(shí),y有最大值1cm.此時(shí)QD=3在Rt△AQP中,SKIPIF1<0故AQ的最小值是5故選:A.【點(diǎn)睛】本題考查最值問題,是利用二次函數(shù)求最值的方式解決的,常見求最值方法有3種:利用對(duì)稱求最值;利用三角形三邊關(guān)系求最值;利用二次函數(shù)性質(zhì)求最值.變式3-2(2022·重慶·一模)如圖,在正方形ABCD中,AB=8,AC與BD交于點(diǎn)O,N是AO的中點(diǎn),點(diǎn)M在BC邊上,且BM=6.P為對(duì)角線BD上一點(diǎn),則PM﹣PN的最大值為()A.2 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】以BD為對(duì)稱軸作N的對(duì)稱點(diǎn)N′,連接PN′,MN′,依據(jù)PM?PN=PM?PN′?MN′,可得當(dāng)P,M,N′三點(diǎn)共線時(shí),取“=”,再求得SKIPIF1<0,即可得出SKIPIF1<0,∠CMN′=90°,再根據(jù)△N′CM為等腰直角三角形,即可得到CM=MN′=2,即可求得.【詳解】解:如圖所示,以BD為對(duì)稱軸作N的對(duì)稱點(diǎn)N’,連接MN′并延長(zhǎng)交BD于P,連NP,根據(jù)軸對(duì)稱性質(zhì)可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',當(dāng)P,M,N'三點(diǎn)共線時(shí),取“=”,∵正方形邊長(zhǎng)為8,∴SKIPIF1<0,∵O為AC中點(diǎn),∴SKIPI

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論