自動(dòng)控制理論課件_第1頁
自動(dòng)控制理論課件_第2頁
自動(dòng)控制理論課件_第3頁
自動(dòng)控制理論課件_第4頁
自動(dòng)控制理論課件_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Unstable跨越華盛Unstable跨越華盛頓州的塔科馬峽谷的首座橋——開通于1940年7月日。只要有風(fēng),這座大橋就會(huì)晃災(zāi)難發(fā)災(zāi)難發(fā)生(a)(b)(c)(a)(b)(c)About(P145.Section9.1.1DefineontheStabilityofClosed-loopWhenthetransferfunctionofsystemAbout(P145.Section9.1.1DefineontheStabilityofClosed-loopWhenthetransferfunctionofsystemisФ(s),theoutputG(s)KMC(s)Φ(s)R(s)R(s)1G(s)Hn(ssir(t)nKMsC(s)R(s)n(ssii9.1Routh’sStabilitynC(t)L1[C(s)]nC(t)L1[C(s)]ResiThesystemissthene nThentotalC(t)ciesitThesystemisThesystemisstableThesystemisstableonlywhenalltheclosed-polesarelocatedintheleft-handhalfofthescomplexplane(LHP);Thesystembecomeunstableassoonasoneclosed-looppoleislocatedintheright-handhalfofthescomplexplane(RHP).s1,s2,s1,s2,LAnditscharacteristicroots9.2AlgebraStabilityOnthebasisoftherelationshipsbetweenrootsandcoefficientsoftheequation,weknowIfwerequestthattheserootss1-nhaveallnegativereal-part,those1a0ina2sOnthebasisoftherelationshipsbetweenrootsandcoefficientsoftheequation,weknowIfwerequestthattheserootss1-nhaveallnegativereal-part,those1a0ina2s,,Ljmustalli,jia3nsisska0i,j,kijOtherwisethereisonepositivereal-partrootatleast.Mn(1)nnai0stablestableOriginalCalculatedOriginalCalculatedetdynnem——ehsd (6RouthTable:(E.J.aLsa01nLaaaaaaa0246 Lsa1a4RouthTable:(E.J.aLsa01nLaaaaaaa0246 Lsa1a4a0Lbbbbb12342a1Lcccc1234aaa b3a2sd21b1a3e1b1OriginalanRouthCriterion(A)–Thesufficientandnecessaryconditionis:AllthedataofthefirstcolumnofRouthCriterion(A)–Thesufficientandnecessaryconditionis:AllthedataofthefirstcolumnofRouth’sarraymustbepositive.KKK64K30 K304KSP.Theopen-looptransferG(s)K'(ss2(TsK,τ,TwhichSP.Theopen-looptransferG(s)K'(ss2(TsK,τ,TwhichthesystemisThecharacteristicequations2(Ts1)K(s1)Ts3s2KsK0T1KKKKTT,0KKmmnfThecoefficientsofanyrowmaybemultipliedordividedbyapositivenumberwithoutchangingthesignsofthefirstcolumn.ThelaborofevaluatingthecoefficientsinRouth’sarraycanbereducedbymultiplyingordividinganyrowbyaconstant.Thismayresult,forexample,inreducingevaluationoftheremaining9.3TheoremsaboutRouth3s53s52s49s35s212s20WhenthefirstterminaWhenthefirstterminarowiszerobutnotallthetermsarezero,thefollowingmethodscanbeSubstitutes=1/xintheoriginalequation,thensolvetherootsxwithpositiverealparts.Thenumberrootsxwithpositiverealpartswillbethesameasthenumberofsrootswithpositiverealparts.Multiplytheoriginalpolynomialbythefactor(s+1),whichintroducesanadditionalnegativeroot.ThenformtheRouth’sarrayforthenewpolynomial.Substituteasmallvariableε(ε>0,andε→0)forthiszeroelement.m.AotneThereareTherearerootswithpositiverealparts.MethodQ1(s)Q(MethodQ1(s)Q(s)(s1)2s44s27s12234975Thesameresultisobtainedbybothmethod.Therearetwochangesofsigninthefirstcolumn,sotherearetwozerosofQ(s)withpositiverealparts.METHODQ(s)2s2METHODQ(s)2s22s11225255052 TheoremAzeroTheoremAzeroWhenallthecoefficientsofonerowarezero,procedureisasTheauxiliaryequationcanbeformedfromtheprecedingrow,asshownbelow.TheRouth’sarraycanbecompletedbyreplacingtheall-zerorowwiththecoefficientsobtainedbydifferentiatingtheauxiliaryequation.Therootsoftheauxiliaryequationarealsorootsoftheoriginalequation.Theserootsoccurinpairandarethenegativeofeachother.Therefore,theserootsmaybeimaginary(complexconjugates)orreal(onepositiveandonenegative),maylieinquadruplets(twopairsofcomplex-conjugateroots),etc.ConsiderthesystemthathasthecharacteristicQ(s)ConsiderthesystemthathasthecharacteristicQ(s)11s218s12129(Afterdividingby(Afterdividingby 920Thepresenceofazerorow(thes1row)indicatesthattherearerootsthatarethenegativeofeachother.Thenextstepistoformtheauxiliaryequationfromtheprecedingrow,whichisthes2row.Thehighestpowerofsiss2,andonlyevenpowerofsappear.Therefore,theauxiliaryequationis Example(Theorem3.Azero99s2Infact,alltherootsofclosed-loopsystems1 s2 s31 s41Example–CompleteSolutionQ(s)s418s1 19(Afterdividingby Example–CompleteSolutionQ(s)s418s1 19(Afterdividingby (Afterdividingby029009Theauxiliaryequation:s2d(s29)2sThesystemisAndalltherootsofclosed-loopsystemss s1 11234 ConceptsandRouthAcriterionforConceptsandRouthAcriterionfordeterminingstabilityofasystembyexaminingthecharacteristicequationofthetransferfunction.ThecriterionstatesthatthenumberofrootsofthecharacteristicequationwithpositiverealpartsisequaltothenumberofchangesofsignofthecoefficientsinthefirstcolumnoftheRouth’sarray.Aperformancemeasureofasystem.systemisstableifallthepolesofthetransferfunctionhavenegativerealparts.StableAdynamicsystemwithasystemresponsetoaboundedProblemProblemProblemProblem1n1nft–satfesfcnepmsanfenepr1G(s)H(s)G(s)H(s)C(s)1G(s)HmK(szjs j nf(KG(s)H(s)(spi9.4RootLocusMethod:MagnitudeandPhaseEquationAsecond-order2KKG(s) H(s)nAsecond-order2KKG(s) H(s)n2ss(s22snn1Locationofrootsforthe - - - - - - - - -1.0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論