版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
不可能把熱從低溫物體傳到高溫物體,而不引起其它變化物理化學(xué)電子教案—第二章2024/3/6第二章熱力學(xué)第二定律2.2
熵的統(tǒng)計意義2.3
熵變的計算2.5
亥姆霍茲自由能和吉布斯自由能2.4
熱力學(xué)第三定律與化學(xué)反應(yīng)熵變的計算2.1
熱力學(xué)第二定律的敘述及熵函數(shù)2.6
偏摩爾量與化學(xué)勢2024/3/62.1
第二定律的敘述及熵函數(shù)自發(fā)變化某種變化有自動發(fā)生的趨勢,一旦發(fā)生就無需借助外力,可以自動進行,這種變化稱為自發(fā)變化。自發(fā)變化的共同特征—不可逆性任何自發(fā)變化的逆過程是不能自動進行的。例如:(1) 焦耳熱功當量中功自動轉(zhuǎn)變成熱;(2) 氣體向真空膨脹;(3) 熱量從高溫物體傳入低溫物體;(4) 濃度不等的溶液混合均勻;(5) 鋅片與硫酸銅的置換反應(yīng)等,它們的逆過程都不能自動進行。當借助外力,體系恢復(fù)原狀后,會給環(huán)境留下不可磨滅的影響。2024/3/6卡諾循環(huán)與卡諾定理卡諾循環(huán)熱機效率卡諾定理2024/3/6卡諾循環(huán)(Carnotcycle)1824年,法國工程師N.L.S.Carnot(1796~1832)設(shè)計了一個循環(huán),以理想氣體為工作物質(zhì),從高溫?zé)嵩次盏臒崃浚徊糠滞ㄟ^理想熱機用來對外做功W,另一部分的熱量放給低溫?zé)嵩?。這種循環(huán)稱為卡諾循環(huán)。N.L.S.Carnot2024/3/6卡諾循環(huán)(Carnotcycle)1mol
理想氣體的卡諾循環(huán)在pV圖上可以分為四步:過程1:等溫可逆膨脹由到所作功如AB曲線下的面積所示。2024/3/6卡諾循環(huán)(Carnotcycle)2024/3/6卡諾循環(huán)(Carnotcycle)過程2:絕熱可逆膨脹由到所作功如BC曲線下的面積所示。2024/3/6卡諾循環(huán)(Carnotcycle)2024/3/6卡諾循環(huán)(Carnotcycle)過程3:等溫(TC)可逆壓縮由到環(huán)境對體系所作功如DC曲線下的面積所示2024/3/6卡諾循環(huán)(Carnotcycle)2024/3/6卡諾循環(huán)(Carnotcycle)過程4:絕熱可逆壓縮由到環(huán)境對體系所作的功如DA曲線下的面積所示:2024/3/6卡諾循環(huán)(Carnotcycle)2024/3/6卡諾循環(huán)(Carnotcycle)整個循環(huán):是體系所吸的熱,為正值,是體系放出的熱,為負值。即ABCD曲線所圍面積為熱機所作的功。2024/3/6卡諾循環(huán)(Carnotcycle)2024/3/6卡諾循環(huán)(Carnotcycle)過程2:過程4:相除得根據(jù)絕熱可逆過程方程式2024/3/6熱機效率(efficiencyoftheengine)任何熱機從高溫?zé)嵩次鼰?一部分轉(zhuǎn)化為功W,另一部分傳給低溫?zé)嵩?將熱機所作的功與所吸的熱之比值稱為熱機效率,或稱為熱機轉(zhuǎn)換系數(shù),用表示。恒小于1?;?024/3/6卡諾定理卡諾定理:所有工作于同溫?zé)嵩春屯瑴乩湓粗g的熱機,其效率都不能超過可逆機,即可逆機的效率最大??ㄖZ定理推論:所有工作于同溫?zé)嵩磁c同溫冷源之間的可逆機,其熱機效率都相等,即與熱機的工作物質(zhì)無關(guān)??ㄖZ定理的意義:(1)引入了一個不等號,原則上解決了化學(xué)反應(yīng)的方向問題;(2)解決了熱機效率的極限值問題。2024/3/6熵的概念從卡諾循環(huán)得到的結(jié)論任意可逆循環(huán)的熱溫商熵的引出熵的定義2024/3/6從卡諾循環(huán)得到的結(jié)論或:即卡諾循環(huán)中,熱效應(yīng)與溫度商值的加和等于零。2024/3/6任意可逆循環(huán)的熱溫商證明如下:任意可逆循環(huán)熱溫商的加和等于零,即:同理,對MN過程作相同處理,使MXO’YN折線所經(jīng)過程作的功與MN過程相同。VWYX就構(gòu)成了一個卡諾循環(huán)?;?2)通過P,Q點分別作RS和TU兩條可逆絕熱膨脹線,(1)在如圖所示的任意可逆循環(huán)的曲線上取很靠近的PQ過程;(3)在P,Q之間通過O點作等溫可逆膨脹線VW,使兩個三角形PVO和OWQ的面積相等,這樣使PQ過程與PVOWQ過程所作的功相同。2024/3/6熱力學(xué)第二定律的表述克勞修斯(Clausius)的說法:“不可能把熱從低溫物體傳到高溫物體,而不引起其它變化?!遍_爾文(Kelvin)的說法:“不可能從單一熱源取出熱使之完全變?yōu)楣?,而不發(fā)生其它的變化?!焙髞肀粖W斯特瓦德(Ostward)表述為:“第二類永動機是不可能造成的”。第二類永動機:從單一熱源吸熱使之完全變?yōu)楣Χ涣粝氯魏斡绊憽?024/3/6任意可逆循環(huán)的熱溫商2024/3/6任意可逆循環(huán)的熱溫商用相同的方法把任意可逆循環(huán)分成許多首尾連接的小卡諾循環(huán),前一個循環(huán)的等溫可逆膨脹線就是下一個循環(huán)的絕熱可逆壓縮線,如圖所示的虛線部分,這樣兩個過程的功恰好抵消。從而使眾多小卡諾循環(huán)的總效應(yīng)與任意可逆循環(huán)的封閉曲線相當,所以任意可逆循環(huán)的熱溫商的加和等于零,或它的環(huán)程積分等于零。2024/3/6任意可逆循環(huán)的熱溫商2024/3/6熵的引出 用一閉合曲線代表任意可逆循環(huán)??煞殖蓛身椀募雍?在曲線上任意取A,B兩點,把循環(huán)分成A
B和B
A兩個可逆過程。根據(jù)任意可逆循環(huán)熱溫商的公式:2024/3/6熵的引出說明任意可逆過程的熱溫商的值決定于始終狀態(tài),而與可逆途徑無關(guān),這個熱溫商具有狀態(tài)函數(shù)的性質(zhì)。移項得:任意可逆過程2024/3/6熵的定義
Clausius根據(jù)可逆過程的熱溫商值決定于始終態(tài)而與可逆過程無關(guān)這一事實定義了“熵”(entropy)這個函數(shù),用符號“S”表示,單位為:對微小變化這幾個熵變的計算式習(xí)慣上稱為熵的定義式,即熵的變化值可用可逆過程的熱溫商值來衡量?;蛟O(shè)始、終態(tài)A,B的熵分別為和
,則:2024/3/6Clausius
不等式與熵增加原理Clausius
不等式熵增加原理Clausius
不等式的意義2024/3/6Clausius
不等式設(shè)溫度相同的兩個高、低溫?zé)嵩撮g有一個可逆機和一個不可逆機。根據(jù)卡諾定理:則推廣為與多個熱源接觸的任意不可逆過程得:則:2024/3/6Clausius
不等式或設(shè)有一個循環(huán),為不可逆過程,為可逆過程,整個循環(huán)為不可逆循環(huán)。則有如A
B為可逆過程將兩式合并得
Clausius
不等式:2024/3/6Clausius
不等式這些都稱為Clausius
不等式,也可作為熱力學(xué)第二定律的數(shù)學(xué)表達式?;蚴菍嶋H過程的熱效應(yīng),T是環(huán)境溫度。若是不可逆過程,用“>”號,可逆過程用“=”號,這時環(huán)境與體系溫度相同。對于微小變化:2024/3/6熵增加原理對于絕熱體系, ,所以Clausius
不等式為等號表示絕熱可逆過程,不等號表示絕熱不可逆過程。熵增加原理可表述為:在絕熱條件下,趨向于平衡的過程使體系的熵增加?;蛘哒f在絕熱條件下,不可能發(fā)生熵減少的過程。如果是一個孤立體系,環(huán)境與體系間既無熱的交換,又無功的交換,則熵增加原理可表述為:一個孤立體系的熵永不減少。2024/3/6Clausius
不等式的意義Clsusius
不等式引進的不等號,在熱力學(xué)上可以作為變化方向與限度的判據(jù)。“>”號為不可逆過程“=”號為可逆過程“>”號為自發(fā)過程“=”號為處于平衡狀態(tài)因為隔離體系中一旦發(fā)生一個不可逆過程,則一定是自發(fā)過程。2024/3/6Clausius
不等式的意義有時把與體系密切相關(guān)的環(huán)境也包括在一起,用來判斷過程的自發(fā)性,即:“>”號為自發(fā)過程“=”號為可逆過程2024/3/6熱力學(xué)概率和數(shù)學(xué)概率 熱力學(xué)概率就是實現(xiàn)某種宏觀狀態(tài)的微觀狀態(tài)數(shù),通常用表示。數(shù)學(xué)概率是熱力學(xué)概率與總的微觀狀態(tài)數(shù)之比。2.2熵的統(tǒng)計意義2024/3/6熱力學(xué)概率和數(shù)學(xué)概率 例如:有4個小球分裝在兩個盒子中,總的分裝方式應(yīng)該有16種。因為這是一個組合問題,有如下幾種分配方式,其熱力學(xué)概率是不等的。分配方式 分配微觀狀態(tài)數(shù)2024/3/6熱力學(xué)概率和數(shù)學(xué)概率其中,均勻分布的熱力學(xué)概率 最大,為6。 每一種微態(tài)數(shù)出現(xiàn)的概率都是1/16,但以(2,2)均勻分布出現(xiàn)的數(shù)學(xué)概率最大,為6/16,數(shù)學(xué)概率的數(shù)值總是從 。如果粒子數(shù)很多,則以均勻分布的熱力學(xué)概率將是一個很大的數(shù)字。2024/3/6Boltzmann公式這與熵的變化方向相同。 另外,熱力學(xué)概率和熵S都是熱力學(xué)能U,體積V和粒子數(shù)N的函數(shù),兩者之間必定有某種聯(lián)系,用函數(shù)形式可表示為: 宏觀狀態(tài)實際上是大量微觀狀態(tài)的平均,自發(fā)變化的方向總是向熱力學(xué)概率增大的方向進行。2024/3/6Boltzmann公式Boltzmann認為這個函數(shù)應(yīng)該有如下的對數(shù)形式:這就是Boltzmann公式,式中k是Boltzmann常數(shù)。
Boltzmann公式把熱力學(xué)宏觀量S和微觀量概率聯(lián)系在一起,使熱力學(xué)與統(tǒng)計熱力學(xué)發(fā)生了關(guān)系,奠定了統(tǒng)計熱力學(xué)的基礎(chǔ)。因熵是容量性質(zhì),具有加和性,而復(fù)雜事件的熱力學(xué)概率應(yīng)是各個簡單、互不相關(guān)事件概率的乘積,所以兩者之間應(yīng)是對數(shù)關(guān)系。2024/3/62.3
熵變的計算 等溫過程的熵變 變溫過程的熵變 相變過程的熵變 化學(xué)反應(yīng)的熵變 環(huán)境的熵變2024/3/6等溫過程的熵變(1)理想氣體等溫變化(2)等溫等壓可逆相變(若是不可逆相變,應(yīng)設(shè)計可逆過程)(3)理想氣體(或理想溶液)的等溫混合過程,并符合分體積定律,即2024/3/6等溫過程的熵變例1:1mol理想氣體在等溫下通過:(1)可逆膨脹,(2)真空膨脹,體積增加到10倍,分別求其熵變。解:(1)可逆膨脹(1)為可逆過程。2024/3/6 熵是狀態(tài)函數(shù),始終態(tài)相同,體系熵變也相同,所以:等溫過程的熵變(2)真空膨脹 但環(huán)境沒有熵變,則:(2)為不可逆過程2024/3/6變溫過程的熵變(1)物質(zhì)的量一定的等容變溫過程(2)物質(zhì)的量一定的等壓變溫過程2024/3/6變溫過程的熵變1.先等溫后等容2.先等溫后等壓*3.先等壓后等容(3)物質(zhì)的量一定從 到 的過程。這種情況一步無法計算,要分兩步計算,有三種分步方法:2024/3/6相變過程的熵變例2:求下述過程熵變。已知H2O(l)的汽化熱為 解:如果是不可逆相變,可以設(shè)計可逆相變求值。2024/3/6熱力學(xué)第三定律與規(guī)定熵?zé)崃W(xué)溫標熱力學(xué)第三定律規(guī)定熵值2024/3/61848年,Kelvin
根據(jù)Carnot
定理引入了一種不依賴于測溫物質(zhì)特性的溫標,稱為熱力學(xué)溫標。選定水的三相點熱力學(xué)溫度的數(shù)值為273.16,并取其的 作為熱力學(xué)溫度的單位,稱為Kelvin一度,用符號“K”表示。任何體系的熱力學(xué)溫度都是與之相比較的結(jié)果。用公式表示為:熱力學(xué)溫標當可逆熱機傳給熱源的熱量Qc愈小,其熱力學(xué)溫度愈低。極限情況下, ,則該熱源的熱力學(xué)溫度T等于零,稱為絕對零度。2024/3/6熱力學(xué)第三定律凝聚體系的和與T的關(guān)系 1902年,T.W.Richard研究了一些低溫下電池反應(yīng)的和與T的關(guān)系,發(fā)現(xiàn)溫度降低時,和值有趨于相等的趨勢(如圖所示)。用公式可表示為:2024/3/6熱力學(xué)第三定律2024/3/6熱力學(xué)第三定律Nernst熱定理(Nernstheattheorem) 1906年,Nernst經(jīng)過系統(tǒng)地研究了低溫下凝聚體系的反應(yīng),提出了一個假定,即 這就是Nernst熱定理的數(shù)學(xué)表達式,用文字可表述為:在溫度趨近于0K的等溫過程中,體系的熵值不變。2024/3/6熱力學(xué)第三定律并可用數(shù)學(xué)方法證明,該假定在數(shù)學(xué)上也是成立的。當 時 這個假定的根據(jù)是:從Richard得到的和與T的關(guān)系圖,可以合理地推想在T趨向于0K時,和有公共的切線,該切線與溫度的坐標平行,即:2024/3/6熱力學(xué)第三定律(3)“在0K時,任何完整晶體(只有一種排列方式)的熵等于零。”熱力學(xué)第三定律有多種表述方式:(2)在溫度趨近于熱力學(xué)溫度0K時的等溫過程中,體系的熵值不變,這稱為Nernst
熱定理。即:(1)“不能用有限的手續(xù)把一個物體的溫度降低到0K”,即只能無限接近于0K這極限溫度。2024/3/6規(guī)定熵值(conventionalentropy)規(guī)定在0K時完整晶體的熵值為零,從0K到溫度T進行積分,這樣求得的熵值稱為規(guī)定熵。若0K到T之間有相變,則積分不連續(xù)。已知2024/3/6用積分法求熵值(1)以 為縱坐標,T為橫坐標,求某物質(zhì)在40K時的熵值。如圖所示:陰影下的面積,就是所要求的該物質(zhì)的規(guī)定熵。2024/3/6用積分法求熵值(2)圖中陰影下的面積加上兩個相變熵即為所求的熵值。 如果要求某物質(zhì)在沸點以上某溫度T時的熵變,則積分不連續(xù),要加上在熔點(Tf)和沸點(Tb)時的相應(yīng)熵,其積分公式可表示為:2024/3/6規(guī)定熵值(conventionalentropy)2024/3/6用積分法求熵值(2)如果以S為縱坐標,T為橫坐標,所求得的熵值等于S-T圖上陰影下的面積再加上兩個相變時的熵變。2024/3/6規(guī)定熵值(conventionalentropy)2024/3/6化學(xué)過程的熵變(1)在標準壓力下,298.15K時,各物質(zhì)的標準摩爾熵值有表可查。根據(jù)化學(xué)反應(yīng)計量方程,可以計算反應(yīng)進度為1mol時的熵變值。(2)在標準壓力下,求反應(yīng)溫度T時的熵變值。298.15K時的熵變值從查表得到:2024/3/6化學(xué)過程的熵變(3)在298.15K時,求反應(yīng)壓力為p時的熵變。標準壓力下的熵變值查表可得(4)從可逆電池的熱效應(yīng)或從電動勢隨溫度的變化率求電池反應(yīng)的熵變2024/3/6環(huán)境的熵變(1)任何可逆變化時環(huán)境的熵變(2)體系的熱效應(yīng)可能是不可逆的,但由于環(huán)境很大,對環(huán)境可看作是可逆熱效應(yīng)2024/3/62.5亥姆霍茲函數(shù)和吉布斯函數(shù)為什么要定義新函數(shù)亥姆霍茲函數(shù)吉布斯函數(shù)2024/3/6為什么要定義新函數(shù)熱力學(xué)第一定律導(dǎo)出了熱力學(xué)能這個狀態(tài)函數(shù),為了處理熱化學(xué)中的問題,又定義了焓。熱力學(xué)第二定律導(dǎo)出了熵這個狀態(tài)函數(shù),但用熵作為判據(jù)時,體系必須是孤立體系,也就是說必須同時考慮體系和環(huán)境的熵變,這很不方便。通常反應(yīng)總是在等溫、等壓或等溫、等容條件下進行,有必要引入新的熱力學(xué)函數(shù),利用體系自身狀態(tài)函數(shù)的變化,來判斷自發(fā)變化的方向和限度。2024/3/6
2.5.1Helmholtz函數(shù)根據(jù)第二定律根據(jù)第一定律這是熱力學(xué)第一定律和第二定律的聯(lián)合公式得:將代入得:當即系統(tǒng)的始、終態(tài)溫度與環(huán)境溫度相等2024/3/6
Helmholtz函數(shù)
Helmholtz(HermannvonHelmholtz,1821~1894
,德國人)定義了一個狀態(tài)函數(shù)
A稱為Helmholtz函數(shù)(Helmholtzfreeenergy),是狀態(tài)函數(shù),具有容量性質(zhì)。則即:在等溫過程中,封閉系統(tǒng)對外所作的功等于或小于系統(tǒng)Helmholtz函數(shù)的減少值。2024/3/6
Helmholtz函數(shù)等號表示可逆過程,即:
在等溫、可逆過程中,系統(tǒng)對外所作的最大功等于系統(tǒng)Helmholtz函數(shù)的減少值,所以把A稱為功函(workfunction)。根據(jù)若是不可逆過程,系統(tǒng)所作的功小于A的減少值2024/3/6
Helmholtz函數(shù)判據(jù)如果系統(tǒng)在等溫、等容且不作其他功的條件下或等號表示可逆過程,小于號表示是一個自發(fā)的不可逆過程,即自發(fā)變化總是朝著Helmholtz函數(shù)減少的方向進行。這就是Helmholtz函數(shù)判據(jù):2024/3/6
2.5.2Gibbs函數(shù)當當始、終態(tài)壓力與外壓相等,即 根據(jù)熱力學(xué)第一定律和第二定律的聯(lián)合公式得:2024/3/6
Gibbs函數(shù)
Gibbs(GibbsJ.W.,1839~1903)定義了一個狀態(tài)函數(shù):
G稱為Gibbs函數(shù)(Gibbsfreeenergy),是狀態(tài)函數(shù),具有容量性質(zhì)。則等號表示可逆過程即:等溫、等壓、可逆過程中,封閉系統(tǒng)對外所作的最大非膨脹功等于系統(tǒng)Gibbs函數(shù)的減少值。2024/3/6
Gibbs函數(shù)若是不可逆過程,系統(tǒng)所作的非膨脹功小于Gibbs函數(shù)的減少值。如果系統(tǒng)在等溫、等壓、且不作非膨脹功的條件下,或2024/3/6
Gibbs函數(shù)判據(jù)即自發(fā)變化總是朝著Gibbs函數(shù)減少的方向進行,這就是Gibbs函數(shù)判據(jù),系統(tǒng)不可能自動發(fā)生dG>0的變化。因為大部分實驗在等溫、等壓條件下進行,所以這個判據(jù)特別有用。2024/3/62.5.3變化的方向和平衡條件的總結(jié)(1)熵判據(jù)在五個熱力學(xué)函數(shù)U,H,S,A和G中,U和S是最基本的,其余三個是衍生的。
熵具有特殊地位,因為所有判斷反應(yīng)方向和過程可逆性的討論最初都是從熵開始的,一些不等式是從Clausius不等式引入的。但由于熵判據(jù)用于隔離系統(tǒng),既要考慮系統(tǒng)的熵變,又要考慮環(huán)境的熵變,使用不太方便。2024/3/6熵判據(jù)對于絕熱系統(tǒng)
等號表示可逆,不等號表示不可逆,但不能判斷其是否自發(fā)。
因為絕熱不可逆壓縮過程是個非自發(fā)過程,但其熵變值也大于零。2024/3/6對于隔離系統(tǒng)(保持U,V不變)在隔離系統(tǒng)中,如果發(fā)生一個不可逆變化,則必定是自發(fā)的,自發(fā)變化總是朝熵增加的方向進行。熵判據(jù)自發(fā)變化的結(jié)果使系統(tǒng)趨于平衡狀態(tài),這時若有反應(yīng)發(fā)生,必定是可逆的,熵值不變。2024/3/6Helmholtz函數(shù)判據(jù)即自發(fā)變化總是朝著Helmholtz函數(shù)減少的方向進行,直至系統(tǒng)達到平衡。2024/3/6Gibbs函數(shù)判據(jù)即自發(fā)變化總是朝著Gibbs函數(shù)減少的方向進行,直至系統(tǒng)達到平衡。系統(tǒng)不可能自動發(fā)生dG>0的變化。若有非膨脹功存在,則判據(jù)為在不可逆的情況下,環(huán)境所做非膨脹功大于系統(tǒng)Gibbs自由能的增量。2024/3/62.5.4
熱力學(xué)函數(shù)的一些重要關(guān)系式幾個函數(shù)的定義式函數(shù)間關(guān)系的圖示式四個基本公式從基本公式導(dǎo)出的關(guān)系式特性函數(shù)
Maxwell
關(guān)系式2024/3/6幾個函數(shù)的定義式
定義式適用于任何熱力學(xué)平衡態(tài)體系,只是在特定的條件下才有明確的物理意義。(2)Helmholz
自由能定義式。在等溫、可逆條件下,它的降低值等于體系所作的最大功。(1)焓的定義式。在等壓、 的條件下, 。2024/3/6幾個函數(shù)的定義式(3)Gibbs
自由能定義式。在等溫、等壓、可逆條件下,它的降低值等于體系所作最大非膨脹功。或2024/3/6函數(shù)間關(guān)系的圖示式2024/3/6四個基本公式代入上式即得。(1)這是熱力學(xué)第一與第二定律的聯(lián)合公式,適用于組成恒定、不作非膨脹功的封閉體系。雖然用到了 的公式,但適用于任何可逆或不可逆過程,因為式中的物理量皆是狀態(tài)函數(shù),其變化值僅決定于始、終態(tài)。但只有在可逆過程中 才代表 , 才代表。公式(1)是四個基本公式中最基本的一個。因為2024/3/6四個基本公式因為所以(2)2024/3/6四個基本公式因為(3)所以2024/3/6四個基本公式(4)因為所以2024/3/6從基本公式導(dǎo)出的關(guān)系式(1)(2)(3)(4)從公式(1),(2)導(dǎo)出 從公式(1),(3)導(dǎo)出 從公式(2),(4)導(dǎo)出 從公式(3),(4)導(dǎo)出2024/3/6特性函數(shù)對于U,H,S,A,G等熱力學(xué)函數(shù),只要其獨立變量選擇合適,就可以從一個已知的熱力學(xué)函數(shù)求得所有其它熱力學(xué)函數(shù),從而可以把一個熱力學(xué)體系的平衡性質(zhì)完全確定下來。這個已知函數(shù)就稱為特性函數(shù),所選擇的獨立變量就稱為該特性函數(shù)的特征變量。:常用的特征變量為:2024/3/6特性函數(shù)例如,從特性函數(shù)G及其特征變量T,p,求H,U,A,S等函數(shù)的表達式。導(dǎo)出:2024/3/6Maxwell
關(guān)系式全微分的性質(zhì)設(shè)函數(shù)z的獨立變量為x,y,z具有全微分性質(zhì)所以 M和N也是x,y的函數(shù)2024/3/6利用該關(guān)系式可將實驗可測偏微商來代替那些不易直接測定的偏微商。熱力學(xué)函數(shù)是狀態(tài)函數(shù),數(shù)學(xué)上具有全微分性質(zhì),將上述關(guān)系式用到四個基本公式中,就得到Maxwell關(guān)系式:Maxwell
關(guān)系式(1)(2)(3)(4)Maxwell2024/3/6Maxwell
關(guān)系式的應(yīng)用解:例1證明理想氣體的焓只是溫度的函數(shù)。所以,理想氣體的焓只是溫度的函數(shù)。對理想氣體,2024/3/62.5.5G的計算示例等溫物理變化中的
G等溫化學(xué)變化中的
G2024/3/6等溫物理變化中的
G根據(jù)G的定義式求解:根據(jù)具體過程,代入就可求得
G值。因為G是狀態(tài)函數(shù),只要始、終態(tài)定了,總是可以設(shè)計可逆過程來計算
G值。或根據(jù)基本方程求解:2024/3/6等溫物理變化中的
G(1)等溫、等壓可逆相變的
G因為相變過程中不作非膨脹功,2024/3/6等溫物理變化中的
G(2)等溫下,體系從 改變到 ,設(shè)對理想氣體:(適用于任何物質(zhì))2024/3/6等溫化學(xué)變化中的
G(1)對于化學(xué)反應(yīng)這公式稱為van’tHoff
等溫式,也稱為化學(xué)反應(yīng)等溫式。是化學(xué)反應(yīng)進度為1mol時的變化值,是利用van’t
Hoff
平衡箱導(dǎo)出的平衡常數(shù),是反應(yīng)給定的始終態(tài)壓力的比值。2024/3/6等溫化學(xué)變化中的
G(2)若化學(xué)反應(yīng)在等溫下進行,則反應(yīng)正向進行反應(yīng)處于平衡狀態(tài)反應(yīng)不能正向進行2024/3/62.5.6Gibbs-Helmholtz方程
表示 和 與溫度的關(guān)系式都稱為Gibbs-Helmholtz方程,用來從一個反應(yīng)溫度的 (或 )求另一反應(yīng)溫度時的 (或 )。它們有多種表示形式,例如:2024/3/6Gibbs-Helmholtz方程所以根據(jù)基本公式根據(jù)定義式在溫度T時,公式的導(dǎo)出則2024/3/6Gibbs-Helmholtz方程在公式(1)等式兩邊各乘得左邊就是 對T微商的結(jié)果,則移項得公式
的導(dǎo)出移項積分得知道 與T的關(guān)系式,就可從求得的值。2024/3/6Gibbs-Helmholtz方程根據(jù)基本公式根據(jù)定義式在T溫度時所以公式的導(dǎo)出則2024/3/6在公式(3)兩邊各乘得Gibbs-Helmholtz方程移項得等式左邊就是對T微商的結(jié)果,則公式的導(dǎo)出移項積分得知道 與T的關(guān)系式,就可從求得的值。2024/3/62.6偏摩爾量與化學(xué)勢單組分體系的摩爾熱力學(xué)函數(shù)值多組分體系的偏摩爾熱力學(xué)函數(shù)值化學(xué)勢的定義多組分體系中的基本公式偏摩爾量的集合公式Gibbs-Duhem公式化學(xué)勢與壓力的關(guān)系化學(xué)勢與溫度的關(guān)系2024/3/6單組分體系的摩爾熱力學(xué)函數(shù)值體系的狀態(tài)函數(shù)中V,U,H,S,A,G等是廣度性質(zhì),與物質(zhì)的量有關(guān)。設(shè)由物質(zhì)B組成的單組分體系的物質(zhì)的量為,則各摩爾熱力學(xué)函數(shù)值的定義式分別為:摩爾體積(molarvolume)摩爾熱力學(xué)能(molarthermodynamicenergy)2024/3/6單組分體系的摩爾熱力學(xué)函數(shù)值摩爾焓(molarenthalpy)摩爾熵(molarentropy)摩爾Helmholz自由能(molarHelmholzfreeenergy)摩爾Gibbs
自由能(molarGibbsfreeenergy)這些摩爾熱力學(xué)函數(shù)值都是強度性質(zhì)。2024/3/6多組分體系的偏摩爾熱力學(xué)函數(shù)值在多組分體系中,每個熱力學(xué)函數(shù)的變量就不止兩個,還與組成體系各物的物質(zhì)的量有關(guān)。設(shè)Z代表V,U,H,S,A,G等廣度性質(zhì),則對多組分體系偏摩爾量ZB的定義為:
ZB稱為物質(zhì)B的某種容量性質(zhì)Z的偏摩爾量(partialmolarquantity)。2024/3/6多組分體系的偏摩爾熱力學(xué)函數(shù)值使用偏摩爾量時應(yīng)注意:1.偏摩爾量的含義是:在等溫、等壓、保持B物質(zhì)以外的所有組分的物質(zhì)的量不變的條件下,改變所引起廣度性質(zhì)Z的變化值,或在等溫、等壓條件下,在大量的定組成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 17925-2024氣瓶對接焊縫X射線數(shù)字成像檢測
- Tripetroselinin-1-2-3-Tri-6-Z-octadecenoyl-glycerol-生命科學(xué)試劑-MCE-1244
- Diethylene-glycol-d8-2-2-Oxybis-ethan-1-ol-d-sub-8-sub-生命科學(xué)試劑-MCE-5883
- 2025年度掛車司機運輸合同違約責(zé)任與賠償合同
- 2025年度網(wǎng)絡(luò)安全行業(yè)競業(yè)限制協(xié)議生效細則及數(shù)據(jù)隱私
- 二零二五年度創(chuàng)業(yè)公司股權(quán)分配及股權(quán)激勵協(xié)議
- 2025年度消防電梯采購與應(yīng)急救援系統(tǒng)配套合同
- 2025年度水果種植基地農(nóng)業(yè)保險合同
- 2025年度綠色能源股權(quán)合作開發(fā)合同
- 施工現(xiàn)場施工防傳染病制度
- 鉗工考試題及參考答案
- 醫(yī)藥高等數(shù)學(xué)知到章節(jié)答案智慧樹2023年浙江中醫(yī)藥大學(xué)
- 中央企業(yè)商業(yè)秘密安全保護技術(shù)指引2015版
- 第4章操作臂的雅可比
- 人教版初中英語八年級下冊 單詞默寫表 漢譯英
- 學(xué)校網(wǎng)絡(luò)信息安全管理辦法
- 中國古代文學(xué)史 馬工程課件(下)21第九編晚清文學(xué) 緒論
- 2023年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招(語文)試題庫含答案解析
- 外科學(xué)-第三章-水、電解質(zhì)代謝紊亂和酸堿平衡失調(diào)課件
- 人事測評理論與方法-課件
- 最新卷宗的整理、裝訂(全)課件
評論
0/150
提交評論