臨滄市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
臨滄市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
臨滄市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
臨滄市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
臨滄市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

臨滄市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.2.大衍數(shù)列,米源于我國古代文獻(xiàn)《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.3.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.4.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)5.若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)的值為()A.或 B. C. D.或6.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.7.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.8.為比較甲、乙兩名高二學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(yàn)(指標(biāo)值滿分為5分,分值高者為優(yōu)),根據(jù)測驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差9.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.10.函數(shù)在上的大致圖象是()A. B.C. D.11.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.12.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.14.如果復(fù)數(shù)滿足,那么______(為虛數(shù)單位).15.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對任意都有成立,則的值為__________.16.如圖,兩個(gè)同心圓的半徑分別為和,為大圓的一條直徑,過點(diǎn)作小圓的切線交大圓于另一點(diǎn),切點(diǎn)為,點(diǎn)為劣弧上的任一點(diǎn)(不包括兩點(diǎn)),則的最大值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某芯片公司對今年新開發(fā)的一批5G手機(jī)芯片進(jìn)行測評,該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個(gè)小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分?jǐn)?shù)的平均數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測試,該手機(jī)公司將每顆芯片分別裝在3個(gè)工程手機(jī)中進(jìn)行初測。若3個(gè)工程手機(jī)的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;若3個(gè)工程手機(jī)中只要有2個(gè)評分沒達(dá)到11萬分,則認(rèn)定該芯片不合格;若3個(gè)工程手機(jī)中僅1個(gè)評分沒有達(dá)到11萬分,則將該芯片再分別置于另外2個(gè)工程手機(jī)中進(jìn)行二測,二測時(shí),2個(gè)工程手機(jī)的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有1個(gè)評分沒達(dá)到11萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機(jī)公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測試,現(xiàn)手機(jī)公司測試部門預(yù)算的測試經(jīng)費(fèi)為10萬元,試問預(yù)算經(jīng)費(fèi)是否足夠測試完這100顆芯片?請說明理由.18.(12分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.19.(12分)某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對稱軸垂直于l3,且交l3于M

),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1

(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;(2)游客(視為點(diǎn)P)在棧道AB的何處時(shí),觀測EF的視角(∠EPF)最大?請?jiān)冢?)的坐標(biāo)系中,寫出觀測點(diǎn)P的坐標(biāo).20.(12分)已知?jiǎng)訄AE與圓外切,并與直線相切,記動(dòng)圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過點(diǎn)的直線l交曲線C于A,B兩點(diǎn),若曲線C上存在點(diǎn)P使得,求直線l的斜率k的取值范圍.21.(12分)已知函數(shù),其中,.(1)當(dāng)時(shí),求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r(shí),求在上的值域.22.(10分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點(diǎn)為棱的中點(diǎn).(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說明理由;(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.2、B【解析】

直接代入檢驗(yàn),排除其中三個(gè)即可.【詳解】由題意,排除D,,排除A,C.同時(shí)B也滿足,,,故選:B.【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時(shí)可代入檢驗(yàn),利用排除法求解.3、A【解析】

由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.4、D【解析】

根據(jù)所給的雷達(dá)圖逐個(gè)選項(xiàng)分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算為80分,不是最強(qiáng)的,故D錯(cuò)誤;故選:D【點(diǎn)睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計(jì)算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.5、C【解析】試題分析:因?yàn)閺?fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點(diǎn):純虛數(shù)6、C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.7、B【解析】

由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對值不等式求得結(jié)果.【詳解】由題意知:定義域?yàn)?,,為偶函?shù),當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡不等式.8、C【解析】

根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項(xiàng).【詳解】根據(jù)雷達(dá)圖得到如下數(shù)據(jù):數(shù)學(xué)抽象邏輯推理數(shù)學(xué)建模直觀想象數(shù)學(xué)運(yùn)算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點(diǎn)睛】本題考查統(tǒng)計(jì)問題,考查數(shù)據(jù)處理能力和應(yīng)用意識.9、A【解析】

根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.10、D【解析】

討論的取值范圍,然后對函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時(shí),,故切線的斜率變小,當(dāng)時(shí),,故切線的斜率變大,可排除A、B;當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時(shí),,故切線的斜率變大,當(dāng)時(shí),,故切線的斜率變小,可排除C,故選:D【點(diǎn)睛】本題考查了識別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.11、D【解析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.12、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳?yàn)椤⒎謩e是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C。【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求得復(fù)數(shù),再由復(fù)數(shù)模的計(jì)算公式即得.【詳解】,,則.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算和求復(fù)數(shù)的模,是基礎(chǔ)題.14、【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,然后利用復(fù)數(shù)模的計(jì)算公式求解.【詳解】∵,∴,∴,故答案為:.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模的求法,屬于基礎(chǔ)題.15、【解析】

由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.16、【解析】

以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,,,然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即又平分,所以,則,設(shè),則,,所以,所以,,所以的最大值是.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、利用向量解決幾何問題,同時(shí)考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)預(yù)算經(jīng)費(fèi)不夠測試完這100顆芯片,理由見解析【解析】

(1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評測分?jǐn)?shù)的平均數(shù);(2)先求出每顆芯片的測試費(fèi)用的數(shù)學(xué)期望,再比較得解.【詳解】(1)依題意,,故.又因?yàn)椋?,所求平均?shù)為(萬分)(2)由題意可知,手機(jī)公司抽取一顆芯片置于一個(gè)工程機(jī)中進(jìn)行檢測評分達(dá)到11萬分的概率.設(shè)每顆芯片的測試費(fèi)用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費(fèi)用的數(shù)學(xué)期望為(元),因?yàn)?,所以顯然預(yù)算經(jīng)費(fèi)不夠測試完這100顆芯片.【點(diǎn)睛】本題主要考查頻率分布直方圖的平均數(shù)的計(jì)算,考查離散型隨機(jī)變量的數(shù)學(xué)期望的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.18、【解析】

將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因?yàn)橄嗲?所以圓心到直線的距離等于半徑,即解得.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程的互化,考查直線與圓的位置關(guān)系,是基礎(chǔ)題.19、(1)見解析,,x[0,1];(2)P(,)時(shí),視角∠EPF最大.【解析】

(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系,設(shè)出方程,通過點(diǎn)的坐標(biāo)可求方程;(2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測點(diǎn)P的坐標(biāo).【詳解】(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點(diǎn)B得:p=1,故方程為,x[0,1];(2)設(shè)P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,則:,當(dāng)且僅當(dāng)即,即,即時(shí)取等號;故P(,)時(shí)視角∠EPF最大,答:P(,)時(shí),視角∠EPF最大.【點(diǎn)睛】本題主要考查圓錐曲線的實(shí)際應(yīng)用,理解題意,構(gòu)建合適的模型是求解的關(guān)鍵,涉及最值問題一般利用基本不等式或者導(dǎo)數(shù)來進(jìn)行求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1);(2).【解析】

(1)根據(jù)拋物線的定義,結(jié)合已知條件,即可容易求得結(jié)果;(2)設(shè)出直線的方程,聯(lián)立拋物線方程,根據(jù)直線與拋物線相交則,結(jié)合由得到的斜率關(guān)系,即可求得斜率的范圍.【詳解】(1)因?yàn)閯?dòng)圓與圓外切,并與直線相切,所以點(diǎn)到點(diǎn)的距離比點(diǎn)到直線的距離大.因?yàn)閳A的半徑為,所以點(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離,所以圓心的軌跡為拋物線,且焦點(diǎn)坐標(biāo)為.所以曲線的方程.(2)設(shè),,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范圍為.【點(diǎn)睛】本題考查由拋物線定義求拋物線方程,涉及直線與拋物線相交結(jié)合垂直關(guān)系求斜率的范圍,屬綜合中檔題.21、(1)(2)【解析】

(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論