版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
摘要在工程中,將至少有兩種溫度不同的流體參與換熱,以一定的傳熱方式在流體間相互傳遞熱量的設(shè)備稱為熱交換熱器。換熱器種類繁多,應(yīng)用也極為普遍,尤其是管殼式換熱器,是目前工業(yè)生產(chǎn)中應(yīng)用最為廣泛的換熱器類型。本研究對(duì)象是總負(fù)荷190kW固定管板式換熱器。通過(guò)查閱各種相關(guān)文獻(xiàn)及設(shè)計(jì)標(biāo)準(zhǔn)、規(guī)范,對(duì)換熱器的發(fā)展現(xiàn)狀和趨勢(shì)、發(fā)展歷史、分類特點(diǎn)等方面進(jìn)行了解,并對(duì)換熱器設(shè)計(jì)過(guò)程進(jìn)行研究,按照換熱器設(shè)計(jì)步驟對(duì)換熱器做工藝計(jì)算、強(qiáng)度計(jì)算并進(jìn)行校核,再通過(guò)得出的結(jié)構(gòu)尺寸繪制CAD圖紙。關(guān)鍵詞:換熱器;固定管板式換熱器;工藝計(jì)算;強(qiáng)度計(jì)算Designof190kWfixed-tube-plateheatexchangerAbstractInengineering,wecalledtheheatexchangerthatthereareatleasttwokindsoffluidswithdifferenttemperaturesparticipatinginheatexchange,andtheequipmentthattransfersheatbetweenthefluidsinacertain.Thispapermainlyfocusesonthedesignoffixedtube-sheetheatexchangerwithatotalloadof190kw.Thisarticlewillusevariousrelatedliteraturesanddesignspecificationsasdesignstandardstounderstandthedevelopmentstatusandtrends,developmenthistory,classificationcharacteristicsofheatexchangers,etc.,andstudytheheatexchangerdesignprocess,andexchangetheminaccordancewiththeheatexchangerdesignsteps.Theheaterperformsthermalcalculation,structuralcalculationandcheck,andthendrawsCADdrawingsbasedontheobtainedstructuraldimensions.Keywords:Heatexchanger;fixedtube-plateheatexchanger;thermalcalculation;structuralcalculation目錄1前言 ………附錄D文獻(xiàn)翻譯原文Reviewofcommonfailuresinheatexchangers–PartI:MechanicalandelevatedtemperaturefailuresMuradAlia,AnwarUl-Hamidb,LuaiM.Alhemsb,AamerSaeedcABSTRACTThisstudyprovidesanoverviewofthecommonmodesandcausesoffailureofheatexchangertubes.Failureinvestigationsofheatexchangersreportedintheliteraturearecompiledinthisreviewbasedonthemechanismsoffailure.Alargemajorityofheatexchangercomponentsfailbywayoffatigue,creep,corrosion,oxidation,andhydrogenattack.Mostcommoncausesoffailureincludefouling,scaling,saltdeposition,welddefects,andvibration.E?ectiverecommendationstopreventsuchfailuresformanimportantpartofthisstudy.Itissuggestedthatsuitablematerialsselection,appropriatetubesdesign,effectivecontroloftheconstitutionoftheworking?uidandoperatingconditionsanduseofskilledworkforcecanprolongservicelifetimeofheatexchangers.Corrosion-relatedfailuresofheatexchangersarepresentedinarelatedarticle(PartII).Keywords:HeatexchangersFailureanalysisReviewFatigueCreepFoulingVibration1.Introduction1.1.HeatexchangerHeatexchangerisaheatmanagementsystemandakeycomponentinseveralindustries.Heatexchangersaretypicallyusedtotransferheatfromonemediumtoanothere?cientlywhilethetransferringmediumcouldbegas,steam,vapors,andvariouskindsofotherliquids.Heatexchangerscanbefoundintubularandplateforms,wheretubulartypeisusedforlarger?uidsystemsthantheplatetype.Materialsselectionforheatexchangersiscarriedoutbasedonseveralimportantconsiderationsincludingcorrosionresistance,thermalconductivity,materialstrength,andcost.Perhaps,thegreatestchallengeistoachievehighreliabilityinservice,becauseheatexchangersareexposedtoharshenvironmentsandconsiderablevariationinoperationalparameters.Heatexchangertubeshavewidespreadapplicationinautomotiveandaeronauticalindustriesaswellassteampowerplants,ammoniaplants,styreneplants,heatpipes,cooledcondensers,industrialcoolingsystems,waterpowerplants,o?shoreplatforms,desulfurizationunits,thermalequipment,fertilizerplants,ethanolvaporizers,gascompressors,nuclearpowerplants,lubricationoilcoolers,petrochemicalplants,coolingwaterunits,sulfurrecoveryunits,hydrocrackerunits,andpreheatertubes.Failurescouldoccurduetodefectsintroducedintopipesandtubingsduringthestagesofmanufacturing,handling,testing,shipment,andstoageorduringstart-up,shutdownandnormaloperationsoftheheatexchanger.Latentsurfaceorsubsurfaceimperfectionsproducedduringmanufacturingoperationscaninducefailureduringservice.However,mostfailuresoccurduetotheaggressiveenvironmentexistinginheatexchangersduringservice.Commonmodesoffailureincludefatigue,creep,corrosion,oxidationandhydrogenattack.Causesoffailurecomprisefouling,scaling,saltdeposition,welddefectsandvibrationthatcouldbebroughtaboutbyinappropriatematerialsselectionortubedesign,non-adherencetorecommendedoperatingconditionsand/orhumanerror.Thesefailuresappearintheformofcracksandleaksduetothee?ectofstressesinthecomponents,blockageduetothedepositsformedattheinnertubesurfaceand/ormaterialremovalduetocorrosionorhigh?owvelocitiesinthetubes.Avarietyofnondestructivetechniques(NDT)areusedtodetectfailuresinheatexchangersincludingvisualinspection,eddycurrent,hydrostatic,magneticparticle,ultrasonic,x-radiography,colorpenetrantandthermography[1,2].Eachofthesetechniqueshasitsstrengthsandlimitations.Topreventfailuresinheatexchangers,arangeofrecommendationsareputforwardwhichusuallyincludereviseddesignofboilercomponents,improvedmaterialsselection,re-evaluationofcorrosionprotection,anduseofe?ectivewatertreatmentandchemicalcleaningstrategies[3].Fig.1.Schematicofashellandtubeheatexchangerwithverticalba?es[3].1.2.CharacteristicsofshellandtubeheatexchangersHeatexchangersareusedtotransferheate?cientlybetweentwofluids,withorwithoutseparationofasolidwall.Theheatcouldbetransferredbetweentwofluidsthroughevaporation,condensationorevenwithoutphasechange.Whenatemperaturedi?erenceiscreated,energyintheformofheatistransferredandthisheatcanbesensibleorlatentheat.Themostcommontypeofheatexchangerusedinoilandpetrochemicalindustriesisshellandtubeheatexchanger[4].Themainpartsofacommonshellandtubeheatexchangerareshell,tubes,ba?es,andtube-sheets.Thebasicfunctionofthetubesistotransferheatfromthefluidontheshellsidetothefluidinsidethetubeandviceversa.AschematicdiagramofatypicalshellandtubeheatexchangerispresentedinFig.1.Scalingresistance,wallthicknessandthermalconductivityofthetubematerialareconsideredessentialdesignparametersforheatexchangers.Theinternalpressureoftubesprovidestheminimumresistancetoexternalloadings,thereforemostly,tubeswithhighyieldstrengthandultimatetensilestrengthwhichallowhighpermissiblestressesarenotusedintheindustry.Duringthemanu-facturingofheatexchangers,highsti?nessanddentingresistanceofthetubesisensured.Sti?nessdependsonelasticmodulus,diameter,andthicknessoftubeswhiledentingresistancedependsonthesamefactorsplusmaterialyieldstrength.Finnedtubingrequireshighlyductilematerialtomakesuretubescanbeproperlyextruded.Tominimizefailures,thetubingmaterialanddesignmustpossessadequateresistancetoscaling,overheating,weldingirregularities,corrosionfatigueandoxygenattackinworkingornon-workingcondition.Optimizedoperationalconditions,e?cientdesignandresistancetoenvironmentaldegradationareusedtocombatfailuresinservice.Thepurposeofthisworkistoreviewthepossiblemodesandcausesoffailureinheatexchangertubes.Thistypeofstudywillhelpplantoperatorstorecognizeandunderstandtubefailuresandadoptrecommendationstominimizedowntime,unexpectedshutdown,materialwasteandcostofproduction.2.Modesoffailure2.1.FatigueSimultaneousactionofacorrosiveenvironmentandcyclicstressescaninducefailurebycorrosionfatigue.Repetitiveloadappliedtotheheatexchangerintheformofthermalandmechanicalstressesresultsintubefailureduetocracking.Corrosionfatigueoccursinmetalsundertheactionofdynamicstressesinanycorrosiveenvironmentwhilestresscorrosioncrackingtakesplaceunderstaticstressesinaspecificchemicalenvironment.Materialssusceptibletocorrosionarealsopronetocorrosionfatigue.Thetwomaincausesoffatiguearethermaloverloadingandmechanicaloverstressing.Inthefirstcase,hightemperatureisresponsibleandinthesecondcase,highmechanicalstressesarethecauseoffailure.Incaseofhighmechanicalstresses,residualstressesareproducedinmaterialsduringbendingandrollingbutcanbeminimizedbypost-weldheattreatment.Microstructuretransformationandporositycouldalsoleadtofatigue.Fig.2.Circumferentialcracksandbulgedregion\h[5].Thermalfatigueisdestructivetoheatexchangersandcouldquicklycausefailure[5,6].Failureofabayonettypeboilertubesoperatinginarichenvironmentofhydrogen,carbonmonoxideandnitrogenwasinvestigated[5].ThetubesmadeofASTMA213gradeT-11operatedinamediumthatconsistedofwaterinsidethetubesandprocessgasattheshellsideinanammoniaplant.Theprocessgaswasusedat960°Cwhilesteamwasgeneratedat306°Cand1500psigpressureintheheatexchanger.Theinvestigationrevealedthattherootcauseoffailureoftubeswasthermalfatiguethatwascausedbyoscillationintemperaturebecauseofpoorwatercirculation.Thermalstressesweredevelopedresultinginfatiguethatwasfollowedbywaterleakage.Duringtheexamination,circumferentialcracksacrossthetubeaxiswerefound,thusconfirmingthermalfatiguefailureoftubesasdepictedinFig.2.Inadditiontothis,waterleakagecausedinsu?cientcoolingandariseintemperatureresultedinbulgingandformationoflongitudinalcracksasshowninFig.2.Thiskindoffailurecanbeavoidedbyregularinspectiontodetectanysignsofthermalfatigueandperiodicreplacementofa?ectedtubes[5].Azevedoetal.[6]alsoreportedthataverticalheatexchangermadeofASTMA178-gradeAsteeloperatinginawasteheatrecoveryplantfailedduetothermalfatigue.Thetubeshandledthermalfluidmediumwhilethetubesinletandoutlettemperatureswereat200°Cand300°C,respectively.InFig.3(a),wedgecracksinitiatedattheexternalsurfaceanda3-mmthicklayerofFe3O4-Fe2O3-Fe7S8(Hematite,Magnetite,Ironsulfide)wasobservedattheinternalsurfaceofserpentine.Inadditiontothis,theinternaloxidelayercrackedformingawedgecrackinthecrackgrowthdirectionasdepictedinFig.3(b).Thisoxidelayercausedariseintemperatureandthusthermalfatiguewasacceleratedwhichresultedinthefailureofthetubes.Thermalfatigueduetoariseintemperatureorlocalizedoverheatingcausedtransversecrackingintheserpentine.Overheatingcausedreductioninmaterialstrengthandfatiguelimitleadingtocracking.Hardnessnumberwassignificantlylowerinthezonea?ectedbycrackingcomparedtotheuna?ectedregionsofthetube.Thiskindoffailurecanbeavoidedbyoptimizingheatexchangeroperationandeliminatingtheformationofoxidelayersbycontrollingthermalfluidstability[6].Fig.3.(a)Wedgecracksinitiatedattheexternalsurfaceinthepresenceofthickinternaloxidelayer.(b)Internaloxidelayer(40μminthickness)crackedandformedwedgecracks\h[6].Fig.4.(aandb)SEMimagesofcracksatinternalsurfaceofthetubeand(c)Opticalimageoftransgranularcracksformedatinternalsurfaceofthetube\h[8]Inanotherstudy[7],inashellandtubeheatexchangermadeof304stainlesssteel,defectswerefoundinthetubetotube-sheetweldedjoints.Thesedefectsmightoriginatefromtheresonanceoftubeorvariationinthetemperatureandpressureoftheinsidefluidinthepresenceofcyclicloading,whichcanleadtotheinitiationofcracks.Heatexchangerweldedjointfailedduetofatiguefractureasobservedfromfatiguestriations.Thetubewasimproperlyweldedandtherefore,inadequateexpansionresultedincrackinitiation.Itwasconcludedthatadherencetostandardweldingpracticesandcontrolofexpansioncouldhavepreventedthistypeoffailure[7].Corrosionfatiguereducestheservicelifetimeofheatexchangers[8].Abrassheatexchangertubeusedincoolingapplicationsoperatinginamediumcontainingcoolingwaterontubesideandlubeoilontheshellsidewasexamined.Thetubesu?eredleakageduringserviceanduponexamination,manycrackswereobservedattheinternalsurface.Cross-sectionsofthea?ectedtubeswereexaminedusingscanningelectronmicroscopyasdepictedinFig.4(a)and(b).Itwasfoundthattheinternalsurfacehadsu?eredseverecorrosionattackandrepresentedthemainsourceofinitiationofcracks.Fromthechemicalinvestigation,itwasinferredthattubeareasa?ectedbyseverecorrosionweredepletedinZnascomparedtotherestoftheuna?ectedareas.Itwasconcludedthatbrasstubesu?ereddezincificationthatcausedcorrosionfatiguefailureinitiatingun-branchedmultipleparallelcracksaswellastransgranularcracksasdepictedinFig.4(c).Anumberofrecommendationsforthisfailurepreventionwereputforwardincludingtheuseofadmiraltybrass,arsenicadditiontocontrollingdezincification,andusageofinhibitedaluminumbrassorcupro-nickelsin-hibitedalloyssuitableforaggressiveenvironments[8].Criticalcomponentsofheatexchangersincludeboilerwatertubes,superheater,andreformertubes.Creepistheexposureofthesecomponentstoanaggressiveenvironmentthatcausesadditionalstrainovertime.Theprimaryfactorsthatdeterminetherateofdeformationincludetime,temperature,andstresseventuallyleadingtocreepruptureofcomponents.Thetubesexposedtooperatingconditonsthatarepronetocreepexperienceshorterlifetime[9].Approximately30%ofallfailuresofheatexchangercomponentsareduetocreeprupture.Creepdamagecanculminateintheformofintergranular,transgranularorrupturefailuresinthea?ectedregions.Awaterboilertubemadeof2.25Cr1Mosteelwasexaminedforcreeprupturefailure.Anoxidelayer(0.25mminthickness)interferedwiththecoolingactioninthesystemthatledtoanincreaseinthetemperatureofthetube.Riseintemperaturewasduetothedualactionoftheoxidelayerandfluegasthatwasusedat920°C.Evidenceoftheformationofintergranularferrite,trans-granularferrite,andintergranularausteniteeventuallyleadingtocreeprupturewasfound.Martensiteformationwasobservedattheedgeofthefracturedtube.Increaseintemperaturecausedaggravatedthinningthatledtoadecreaseintubethickness,whichdepictedthefracturemechanism.Adequatewatercirculationtokeeptheboilertubecleanwasdeemednecessarytoavoidsuchfailure[10].Inanotherstudy,pipelineofsuperheaterthatformspartofthemainheatexchangerassemblywasexaminedforitsfailure.Thesuperheatersteeltubesweremadeofdi?erentsteelgradesincluding15Mo3,13MOCr44and10CrMo910steels.Theaveragesteamvelocityandflowratethroughthepipeobservedwere9.1m/sand893th?1respectively.Anoxidelayerwasfoundaroundthecurvedtubesthathadfailed.Theoxidelayerwasresponsibleforanincreaseinthetemperatureofthetubesthatledtoitsfailurebycreeprupturecracking.Similaroxidelayerwasfoundattheouterwallofthesteeltubesthatweremuchthinner.Wallthinningwasobservedandchangeintubegeometrypointedtowardrupturebeingthefracturemechanism.Hardnessofthefailedcomponentalsodecreasedduetodynamicrecrystallizationintheneighboringweldseam.Itwassuggestedthat13Mo3steelshouldbereplacedwithamaterialwithhigherheatresistance[11].Shellofaheatexchangermadeofheat-resistantalloy(Incoloy800H)failedafter16yearsofservice[12].Carefulexaminationrevealedthatweldjointsintheshellsu?eredfromcreepfailure.Thisisbecausetheshellwasexposedtosuperheatedsteamatatemperatureof720°Cgivingrisetocreepmicrovoidsandcracks.Thechemicalcompositionoftheweldjointswasfoundtobedi?erentfromtherequiredspecification.Timelyinspectionoftheheatexchangerbaseandweldmaterialsforlong-termcreepexposureisessentialtoavoidsuchfailure[12].AsecondarysuperheatermadeofASMESA-213Gr.T-22andoperatinginthermalpowerplantfailedduringservice.Partialblockage,formationofathickadherentoxidelayeratthetubeinternalsurfaceandpresenceofhigh-temperaturefluegasresultedinpoorsteamflowwhichraisedthetubetemperatureandsubsequentlycreepdamageoccurred[13].AsimilarfailureofconvectiontubemadeofASTMA335gradeP91wasobserved[14].Thetubewasoperatinginpressurizedsteam(12.1MPa)with359°Cand492°Cinletandanoutlettemperatureoffluegas,respectively.AnoxidedepositcomposedofC,MOx,Al,Na,S,ClandFewasobservedattheinnerandoutersidesofthetubewhichledtopoorheattransfer.Eventually,long-termexposureofthetubetohightemperaturecausedruptureandbulging.Thiskindoffailurecanbeavoidedbyproperroutinemaintenance.2.3.OxidationHeatexchangersaresusceptibletooxidationduetomateriala?nity,hightemperatureandoxidizingenvironment[15].FailureofsuperheatertubesmadeofSA213-T22usedinamediumoffluegaswithparticlesofaluminaandsilicawasinvestigated[15].Stereoscopicanalysisofthefailedregionrevealedthatoxidelayerformednearaholeatthetubesurfacehadcracked.Afterex-amination,itwasinferredthatregionalongthetubelengthandawayfromtheholewasfullycoveredwithanoxidelayer.Thislayeratthetubesurfacewasformedduetohigha?nityofsteeltoreactwithoxygen.Oxidationkineticsishighatelevatedtemperaturesandinoxidizingenvironments.Exposureofoutsidewallofthetubetoaharshenvironmentresultedinoxidation.Waterorsteamformedadherentoxidelayersattheinternalsideofthetube,thereforenooxidationwasobservedthere.Inthepresentcaseoffailure,severelylocalizedoxidationoccurredbecauseofhightemperatureatthea?ectedregionandhighvelocityofaluminaandsilicaparticlesinthewayofcoalnozzle.Topreventthisfailure,possiblerecommendationsincludedchangesindesign,bandagingstainlesssteel,changingoperationconditionsandreducingthemaximumtemperatureofa?ectedregion[15].Inanelectricalpowerplant,superheaterboilertubesmadeofSA213-T12steeloperatinginwatermediumwith92barpressurewereinvestigated.Investigationconfirmedthefailureofboilertubesduetolocalizedoverheatingbecauseofheatfluxattackcausedbygasoroilburners.Duetooverheating,steamrapidlyformedinthetubesthatcausedsteamblanketingandtemperatureofthetubeswasraisedto700°C.Theanalysisofphysicalstructureshowedthatanoxidelayerhadformedattheinternalsurfaceofthetubesduetooverheating.Theoxidewasidentifiedasmagnetite(Fe3O4).Theoxidemeasuredattheheatedzonearoundthefissureareaofthea?ectedtubeswas0.44mminthickness.Riseintemperaturealteredthemicrostructureofthetubeatthefracturesite,asshowninFig.5,whereferritematrixwithcarbideparticlescanbeobserved.Theoverheatingresultedinphasetransformationofpearlitemicrostructuretospherodizedcarbideparticles.Overheatingalteredtheoriginaltubematerialpropertiesfromtheactualdesignvalues.Toavoidsuchfailuresinthefuture,itwasrecommendedthatoverheatingneedstobecontrolledalongsidetheamountsofsiliconandsulfurinthemediumwithwatertreatmentprograms[16].TubesmadeofFe-basedUSNN08810alloyusedat850°Cdevelopedlongitudinalcracksafteronethirdofitsexpectedservicelifetime.Thefailuremodewasintergranularcrackingduetohigh-temperaturecarburizationandthecauseoffailurewasdeterminedtobeoverheatingduetodecokingoperations.Itwasrecommendedtokeepaclosecontroloftemperaturetoavoidoverheating.UseofanalternativealloysuchasNi-basedUNSN07214wasalsosuggestedasareplacement[17].Fig.5.Spherodizedcarbideparticlesinthemicrostructure\h[16].2.4.HydrogenattackAheatexchangerinapetroleumrefinerywasalmost40yearsinservicebeforeitsu?eredcatastrophicfailure[18].Theexplosionkilledsevenpeopleinthesurroundings.Causeoffailurewasfoundtobehightemperaturehydrogenattack(HTHA).Thiskindoffailureoccursincarbonsteelwhenexposedtohydrogenatatemperatureabove205°C.Atthistemperature,molecularhydrogenconvertstonascenthydrogenandthendi?usesintocarbonsteelsurface.Afterdi?usion,itproducesmethaneuponreactingwithfreecarbonandmetalcarbides.Methanegeneratedbeneaththesurfaceisunabletoescape,thereforeitcreatesvoidsthatleadtohighinternalpressure.Thesevoidsbuildupwithtimeandtoreleasetheseinternalpressure,cracksforminthematerial.Highfailureriskiscloselyassociatedwiththeincreaseintemperatureandpressure.Highappliedorresidualstressesalsoelevatetheriskofhydrogenattackathightemperatures[18].3.Causesoffailure3.1.Fouling/scaling/saltdepositionWheninsolubleparticulates(e.g.,polymericdeposits,biologicalgrowth,etc.)presentinthecirculatingmediumsticktotheinnersurfaceofheatexchangertubesandresultinthereductionoftubecross-sectionalarea,theflowpathmaybesubsequentlyblocked.Thisphenomenonistermedasfoulingwhichcanbecleanedrelativelyeasilybymechanicalmeanssuchashydro-blastingorscrubbingwithbrush.Theaccumulationofdirtandvariousotherparticlesattheheatexchangertubesurfacesproducedepositlayerswhichreducetheheattransferandincreasethefluidtemperatureresultinginreducedperformance.Lowfluidvelocityincreasesthepossibilityofaccumulationofparticlesatthetubesurface.Duetohighsensitivityoftheprocessinheatexchanger,eventhecleancyclingwaterwithlittleriskoffoulingcouldbedangerousifusedinexcess[19].Alargeproportionofheatexchangertubefailuresareattributedtofoulingwhichmostlyoccursduetopoorheatexchangerdesignandoperationatanimproperflowratethantheintendeddesign.Thefluidmediumonthegassideisnormallyunclean.Toreducefouling,allcomponentsoftheheatexchangermustbeproperlycleaned.Heatexchangersurfacesmustbemadeinternallysmooth,asitisobservedthattexturedsurfacesaremorevulnerabletofoulingascomparedtothesmoothones.Foulinghassignificantcommercial,environmentalandoperationalsafetyimpactonindustrialoperations.Inonestudy[20],dynamicmeshmodelwasdevelopedtoinvestigatethee?ectoffoulingwithandwithoutremovalmechanismwhereprocesseswithdi?erentparticlesizeandvelocityoffluegasweresimulated.Foulingmassexhibitedlinearandasymptoticbehaviorswithandwithoutremovalmechanism,respectively.Scalingmassrapidlyreducedwithparticlediameter.Inadditiontothis,aftertheidentificationofmanifoldparticlesinjectedfromtheinlet,smallerparticlesexhibitedhigherfoulingrateandhighflowvelocityresultedinlowergrowthofthedeposit.Forasmallparticlediameterandlowfluegasvelocity,thermale?ectivenessnumberdecreasedbyapproximately10%after15min.Thisisanindicationthatheatexchangersneedtobedesignedwithanaimtoexhibithighheattransferandlowfoulingrate[20].Scalingoccurswhenamineralfilmsuchcalciumsulfateorcalciumcarbonatedepositsattheinnersurfaceofthetube.Asthetemperatureincreases,solubilityofthesesaltsinwaterdecreases,resultinginanincreaseddepositionatthetubesurface.Scalingdecreasestheheattransfersignificantly.Scalesaretenaciousandcannotberemovedbymechanicalmeans.Acidcleaningisnormallyemployedforthispurpose[21].Acomparativestudywascarriedoutforplainandenhancedheatexchangertubes.ArtificialhardwaterthatcontainedCaCO3wascirculatedthroughthetubes.Scalewasformedthatresultedinadecreaseinheattransfer.Heatexchangerwithenhanceddesignperformedbetterintermsofheattransferatthesamefluidvelocityunderseverescalingconditions[22].HighpHcancauseanunstablerateofheattransferwhilehightemperaturecauseslowersysteme?ciency.HighpHenhancesthekineticsofprecipitationformationandmakesiteasiertolosecontroloverheattransferwhilehightemperaturefacilitatesthescaleformationbysupersaturation[3].Ammoniumchloride-basedunder-depositscorrosionisfrequentlyreportedbyoperatorsandengineersinoverheatedequipment[23,24].Saltdepositioncanleadtoenergylossanddamage.Zhengetal.[23]reportedthattubesofaircoolerfailedduetounder-depositcorrosionofNH4Clsalts.Thermodynamicinvestigationsrevealedthatcorrosiona?ectedregionwascloselyrelatedtothecrystallizationtemperatureofNH4Clsaltsandwaterdewpointtemperature.NumericalinvestigationshoweddepositionofNH4Clsaltsattheuppersurfaceofthetubes.Themaximumsaltsdepositionwasfoundtobe65–73cmfromthetubeinletforthevelocityofmulti-phaseflowrangedfrom350to500cm/sec.Intheexperimentalinvestigation,thecorrosionresistanceof316Lstainlesssteelwasfoundtobebetterthancarbonsteelatdi?erentlevelsoftemperatureandpressurewhichindicatedthatcorrosionissuewasmoreseriousintubebundlesthantubeliners[23].Washingwithwatercanbeusedtoremovethesalts.Duringoperation,fluidtem-peratureinsidethetubecanbekeptbelowthewaterdewpointtoavoidNH4Clcrystallization.3.2.WelddefectsWeldingjointresultsinaninhomogeneousmicrostructurefromweldmetaltoheata?ectedzonetouna?ectedbasemetal.Inaddition,roughness,voids,porosity,inclusions,discontinuitiesandshrinkagecrackscouldresultfromwelding[2].Adherencetoproperweldingpracticeiskeytoproducingahomogeneousweldstructurethatleadstoimprovedandlong-lastingoperationofheatexchangers.Inappropriateselectionofbaseandweldmetals,improperheattreatmentandpresenceofmechanicalstressescouldleadtofailure[25–28].Inappropriatematerialselectionresultedinthefailureoftube-sheetweldofE-715heatexchanger.SEManalysis,metallographicexaminationandelectrochemicalcorrosioninvestigationconcludedthatbasemetalhadhighercorrosionpotentialthantheweldinserviceenvironment,whichledtothecorrosionofweldandeventualperforation.Inadditiontothis,thetubeenvironmentconsistedofhydrocarbon,wherehighcarboncontentsledtocarburizationofthetubesurface[26].Inanotherpaper,Oteguietal.[27]e
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電力系統(tǒng)電力物資安全儲(chǔ)存與運(yùn)輸合同3篇
- 二零二五年建筑公司內(nèi)部工程承包合同范本5篇
- 臨時(shí)服務(wù)協(xié)議:專項(xiàng)工作期間合作意向書(shū)版A版
- 2025年度農(nóng)家樂(lè)鄉(xiāng)村旅游服務(wù)合同范本3篇
- 2024版有關(guān)房屋分配協(xié)議書(shū)
- 2024租賃期滿設(shè)備回收合同
- 二零二五年租房合同涉及的環(huán)保要求3篇
- 二零二五版出租車行業(yè)駕駛員勞動(dòng)合同執(zhí)行規(guī)范6篇
- 二零二五年能源設(shè)施工程設(shè)計(jì)合同補(bǔ)充協(xié)議3篇
- 2024版智能可穿戴設(shè)備設(shè)計(jì)與生產(chǎn)合同
- 3-U9C操作培訓(xùn)-MRP基礎(chǔ)
- 2024至2030年中國(guó)銅制裝飾材料行業(yè)投資前景及策略咨詢研究報(bào)告
- 中金公司在線測(cè)評(píng)真題
- 高中英語(yǔ)新課程標(biāo)準(zhǔn)解讀課件
- 2024供應(yīng)商大會(huì)策劃方案
- 2024光伏發(fā)電工程交流匯流箱技術(shù)規(guī)范
- 旅游活動(dòng)碳排放管理評(píng)價(jià)指標(biāo)體系構(gòu)建及實(shí)證研究
- 2024小學(xué)語(yǔ)文六年級(jí)上冊(cè)第四單元:大單元整體教學(xué)課件
- 12S108-1 倒流防止器選用及安裝
- 人教版六年級(jí)下冊(cè)數(shù)學(xué)期末測(cè)試卷附答案【達(dá)標(biāo)題】
- 員工工作狀態(tài)分析
評(píng)論
0/150
提交評(píng)論