均值不等式的總結(jié)及應(yīng)用_第1頁
均值不等式的總結(jié)及應(yīng)用_第2頁
均值不等式的總結(jié)及應(yīng)用_第3頁
均值不等式的總結(jié)及應(yīng)用_第4頁
均值不等式的總結(jié)及應(yīng)用_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高分中考均值不等式總結(jié)及應(yīng)用1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則 (2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)3.若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)4.若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)5.若,則(當(dāng)且僅當(dāng)時(shí)取“=”)說明:(1)當(dāng)兩個(gè)正數(shù)的積為定植時(shí),可以求它們的和的最小值,當(dāng)兩個(gè)正數(shù)的和為定植時(shí),可以求它們的積的最小值,正所謂“積定和最小,和定積最大”.(2)求最值的條件“一正,二定,三取等”(3)均值定理在求最值、比較大小、求變量的取值范圍、證明不等式、解決實(shí)際問題方面有廣泛的應(yīng)用應(yīng)用一:求最值例1:求下列函數(shù)的值域(1)y=3x2+eq\f(1,2x2)(2)y=x+eq\f(1,x)解:(1)y=3x2+eq\f(1,2x2)≥2eq\r(3x2·eq\f(1,2x2))=eq\r(6)∴值域?yàn)閇eq\r(6),+∞)(2)當(dāng)x>0時(shí),y=x+eq\f(1,x)≥2eq\r(x·eq\f(1,x))=2;當(dāng)x<0時(shí),y=x+eq\f(1,x)=-(-x-eq\f(1,x))≤-2eq\r(x·eq\f(1,x))=-2∴值域?yàn)椋ǎ?,?]∪[2,+∞)【解題技巧】技巧一:湊項(xiàng)例已知,求函數(shù)的最大值。 解:因,所以首先要“調(diào)整”符號(hào),又不是常數(shù),所以對(duì)要進(jìn)行拆、湊項(xiàng),,當(dāng)且僅當(dāng),即時(shí),上式等號(hào)成立,故當(dāng)時(shí),。評(píng)注:本題需要調(diào)整項(xiàng)的符號(hào),又要配湊項(xiàng)的系數(shù),使其積為定值。技巧二:湊系數(shù)例1.當(dāng)時(shí),求的最大值。解析:由知,,利用均值不等式求最值,必須和為定值或積為定值,此題為兩個(gè)式子積的形式,但其和不是定值。注意到為定值,故只需將湊上一個(gè)系數(shù)即可。當(dāng),即x=2時(shí)取等號(hào)當(dāng)x=2時(shí),的最大值為8。評(píng)注:本題無法直接運(yùn)用均值不等式求解,但湊系數(shù)后可得到和為定值,從而可利用均值不等式求最大值?!郺b≤18∴y≥eq\f(1,18)當(dāng)且僅當(dāng)t=4,即b=3,a=6時(shí),等號(hào)成立。法二:由已知得:30-ab=a+2b∵a+2b≥2eq\r(2ab)∴30-ab≥2eq\r(2ab)令u=eq\r(ab)則u2+2eq\r(2)u-30≤0,-5eq\r(2)≤u≤3eq\r(2)∴eq\r(ab)≤3eq\r(2),ab≤18,∴y≥eq\f(1,18)點(diǎn)評(píng):①本題考查不等式的應(yīng)用、不等式的解法及運(yùn)算能力;②如何由已知不等式出發(fā)求得的范圍,關(guān)鍵是尋找到之間的關(guān)系,由此想到不等式,這樣將已知條件轉(zhuǎn)換為含的不等式,進(jìn)而解得的范圍.變式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。

2.若直角三角形周長(zhǎng)為1,求它的面積最大值。技巧九:取平方5、已知x,y為正實(shí)數(shù),3x+2y=10,求函數(shù)W=eq\r(3x)+eq\r(2y)的最值.解法一:若利用算術(shù)平均與平方平均之間的不等關(guān)系,eq\f(a+b,2)≤eq\f(a2+b2,2),本題很簡(jiǎn)單eq\r(3x)+eq\r(2y)≤eq\r(2)eq\r((eq\r(3x))2+(eq\r(2y))2)=eq\r(2)eq\r(3x+2y)=2eq\r(5)解法二:條件與結(jié)論均為和的形式,設(shè)法直接用基本不等式,應(yīng)通過平方化函數(shù)式為積的形式,再向“和為定值”條件靠攏。W>0,W2=3x+2y+2eq\r(3x)·eq\r(2y)=10+2eq\r(3x)·eq\r(2y)≤10+(eq\r(3x))2·(eq\r(2y))2=10+(3x+2y)=20∴W≤eq\r(20)=2eq\r(5)變式:求函數(shù)的最大值。解析:注意到與的和為定值。又,所以當(dāng)且僅當(dāng)=,即時(shí)取等號(hào)。故。評(píng)注:本題將解析式兩邊平方構(gòu)造出“和為定值”,為利用均值不等式創(chuàng)造了條件??傊覀兝镁挡坏仁角笞钪禃r(shí),一定要注意“一正二定三相等”,同時(shí)還要注意一些變形技巧,積極創(chuàng)造條件利用均值不等式。應(yīng)用二:利用均值不等式證明不等式1.已知為兩兩不相等的實(shí)數(shù),求證:1)正數(shù)a,b,c滿足a+b+c=1,求證:(1-a)(1-b)(1-c)≥8abc

例6:已知a、b、c,且。求證:分析:不等式右邊數(shù)字8,使我們聯(lián)想到左邊因式分別使用均值不等式可得三個(gè)“2”連乘,又,可由此變形入手。解:a、b、c,。。同理,。上述三個(gè)不等式兩邊均為正,分別相乘,得。當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論