![江蘇省無錫市江陰實驗中學2023年九年級數(shù)學第一學期期末檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view12/M09/13/2E/wKhkGWXyLceACvX7AAH2MFKt2Gg980.jpg)
![江蘇省無錫市江陰實驗中學2023年九年級數(shù)學第一學期期末檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view12/M09/13/2E/wKhkGWXyLceACvX7AAH2MFKt2Gg9802.jpg)
![江蘇省無錫市江陰實驗中學2023年九年級數(shù)學第一學期期末檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view12/M09/13/2E/wKhkGWXyLceACvX7AAH2MFKt2Gg9803.jpg)
![江蘇省無錫市江陰實驗中學2023年九年級數(shù)學第一學期期末檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view12/M09/13/2E/wKhkGWXyLceACvX7AAH2MFKt2Gg9804.jpg)
![江蘇省無錫市江陰實驗中學2023年九年級數(shù)學第一學期期末檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view12/M09/13/2E/wKhkGWXyLceACvX7AAH2MFKt2Gg9805.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫市江陰實驗中學2023年九年級數(shù)學第一學期期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.在平面直角坐標系中,將拋物線y=2(x﹣1)2+1先向左平移2個單位,再向上平移3個單位,則平移后拋物線的表達式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+42.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④3.若函數(shù)的圖象在其象限內y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<24.西周時期,丞相周公旦設置過一種通過測定日影長度來確定時間的儀器,稱為圭表。如圖是一個根據(jù)北京的地理位置設計的圭表,其中,立柱的高為。已知,冬至時北京的正午日光入射角約為,則立柱根部與圭表的冬至線的距離(即的長)作為()A. B. C. D.5.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°6.如圖,在△ABC中,∠C=,∠B=,以點A為圓心,適當長為半徑畫弧,分別交AB,AC于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于P,作射線AP交BC于點D,下列說法不正確的是()
A.∠ADC= B.AD=BD C. D.CD=BD7.已知關于x的函數(shù)y=k(x+1)和y=﹣(k≠0)它們在同一坐標系中的大致圖象是()A. B.C. D.8.如圖所示的幾何體是由六個小正方體組合而成的,它的俯視圖是()A. B. C. D.9.如圖,⊙O是△ABC的外接圓,連接OA、OB,∠C=40°,則∠OAB的度數(shù)為()A.30° B.40° C.50° D.80°10.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,則下列結論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是()A.2 B.3 C.4 D.5二、填空題(每小題3分,共24分)11.在雙曲線的每個分支上,函數(shù)值y隨自變量x的增大而增大,則實數(shù)m的取值范圍是________.12.如圖,在矩形中,,以點為圓心,以的長為半徑畫弧交于,點恰好是中點,則圖中陰影部分的面積為___________.(結果保留)13.若圓錐的母線長為4cm,其側面積,則圓錐底面半徑為cm.14.為了估計拋擲同一枚啤酒瓶蓋落地后凸面向上的概率,小明做了大量重復試驗.經過統(tǒng)計發(fā)現(xiàn)共拋擲次啤酒瓶蓋,凸面向上的次數(shù)為次,由此可估計拋擲這枚啤酒瓶蓋落地后凸面向上的概率約為_______________________(結果精確到)15.在平面直角坐標系中,拋物線y=x2如圖所示,已知A點坐標為(1,1),過點A作AA1∥x軸交拋物線于點A1,過點A1作A1A2∥OA交拋物線于點A2,過點A2作A2A3∥x軸交拋物線于點A3,過點A3作A3A4∥OA交拋物線于點A4,過點A4作A4A5∥x軸交拋物線于點A5,則點A5的坐標為_____.16.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.17.如圖在Rt△OAB中∠AOB=20°,將△OAB繞點O逆時針旋轉100°得到△OA1B1,則∠A1OB=____.18.計算sin60°cos60°的值為_____.三、解答題(共66分)19.(10分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(﹣1,0)、C(0,﹣3)兩點,與x軸交于另一點B.(1)求這條拋物線所對應的函數(shù)關系式;(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;(3)設點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.20.(6分)校生物小組有一塊長32m,寬20m的矩形實驗田,為了管理方便,準備沿平行于兩邊的方向縱、橫個開辟一條等寬的小道,要使種植面積為540m2,小道的寬應是多少米?21.(6分)用配方法解方程:x2﹣6x=1.22.(8分)如圖,△ABC是一塊銳角三角形的材料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上,這個正方形零件的邊長是多少mm.23.(8分)如圖,在陽光下的電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米,同一時刻,豎起一根1米高的竹竿MN,其影長MF為1.5米,求電線桿的高度.24.(8分)“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”這段話摘自《九章算術》,意思是說:如圖,矩形城池ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E,南門點F分別是AB、AD的中點,EG⊥AB,F(xiàn)H⊥AD,EG=15里,HG經過點A,問FH多少里?25.(10分)求值:26.(10分)如圖,在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.(1)求這個二次函數(shù)的解析式;(2)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】只需確定原拋物線解析式的頂點坐標平移后的對應點坐標即可.【詳解】解:原拋物線y=2(x﹣1)2+1的頂點為(1,1),先向左平移2個單位,再向上平移3個單位,新頂點為(﹣1,4).即所得拋物線的頂點坐標是(﹣1,4).所以,平移后拋物線的表達式是y=2(x+1)2+4,故選:A.【點睛】本題主要考查了二次函數(shù)圖像的平移,拋物線的解析式為頂點式時,求出頂點平移后的對應點坐標,可得平移后拋物線的解析式,熟練掌握二次函數(shù)圖像的平移規(guī)律是解題的關鍵.2、C【解析】①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關系,表示出BE與EF,即可判斷BE+DF與EF關系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,勾股定理的運用,等邊三角形的性質的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質解題時關鍵.3、B【分析】根據(jù)反比例函數(shù)的性質,可得m+1<0,從而得出m的取值范圍.【詳解】∵函數(shù)的圖象在其象限內y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.4、D【解析】在Rt△ABC中利用正切函數(shù)即可得出答案.【詳解】解:在Rt△ABC中,tan∠ABC=,∴立柱根部與圭表的冬至線的距離(即BC的長)為=.故選:D.【點睛】本題考查解直角三角形的應用,解答本題的關鍵是明確題意,利用銳角三角函數(shù)解答.5、B【解析】只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數(shù)形結合的首先解決問題,屬于中考??碱}型.6、C【分析】由題意可知平分,求出,,利用直角三角形角的性質以及等腰三角形的判定和性質一一判斷即可.【詳解】解:在中,,,,由作圖可知:平分,,故A正確,故B正確,,,,,故C錯誤,設,則,,故D正確,故選:C.【點睛】本題考查作圖復雜作圖,角平分線的性質,線段的垂直平分線的性質,解直角三角形等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.7、A【分析】先根據(jù)反比例函數(shù)的性質判斷出k的取值,再根據(jù)一次函數(shù)的性質判斷出k取值,二者一致的即為正確答案.【詳解】解:當k>0時,反比例函數(shù)的系數(shù)﹣k<0,反比例函數(shù)過二、四象限,一次函數(shù)過一、二、三象限,原題沒有滿足的圖形;當k<0時,反比例函數(shù)的系數(shù)﹣k>0,所以反比例函數(shù)過一、三象限,一次函數(shù)過二、三、四象限.故選:A.8、D【分析】根據(jù)從上邊看得到的圖形是俯視圖,可得答案.【詳解】解:從上邊看第一列是一個小正方形,第二列是兩個小正方形,第三列是兩個小正方形,
故選:D.【點睛】本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.9、C【分析】直接利用圓周角定理得出∠AOB的度數(shù),再利用等腰三角形的性質得出答案.【詳解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故選:C.【點睛】本題主要考查了三角形的外接圓與外心,圓周角定理.正確得出∠AOB的度數(shù)是解題關鍵.10、C【詳解】解:①正確.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設BG=FG=x,則CG=6﹣x.在直角△ECG中,根據(jù)勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.∴BG=1=6﹣1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正確.理由:∵S△GCE=GC?CE=×1×4=6,∵S△AFE=AF?EF=×6×2=6,∴S△EGC=S△AFE;⑤錯誤.∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=115°.故選C.【點睛】本題考查翻折變換(折疊問題);全等三角形的判定與性質;正方形的性質;勾股定理.二、填空題(每小題3分,共24分)11、m<﹣1【分析】根據(jù)在雙曲線的每個分支上,函數(shù)值y隨自變量x的增大而增大,可以得到m+1<0,從而可以求得m的取值范圍.【詳解】∵在雙曲線的每個分支上,函數(shù)值y隨自變量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案為m<﹣1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的性質,解題的關鍵是明確題意,利用反比例函數(shù)的性質解答.12、【分析】連接EC,先根據(jù)題意得出,再得出,然后計算出和的面積即可求解.【詳解】連接EC,如下圖所示:由題意可得:∵是中點∴∴∴∴∴∴故填:.【點睛】本題主要考查扇形面積的計算、矩形的性質、解直角三角形,準確作出輔助線是關鍵.13、3【解析】∵圓錐的母線長是5cm,側面積是15πcm2,∴圓錐的側面展開扇形的弧長為:l==6π,∵錐的側面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,14、【分析】根據(jù)多次重復試驗中事件發(fā)生的頻率估計事件發(fā)生的概率即可.【詳解】∵拋擲同一枚啤酒瓶蓋1000次.經過統(tǒng)計得“凸面向上”的次數(shù)約為10次,∴拋擲這枚啤酒瓶蓋出現(xiàn)“凸面向上”的概率約為=0.1,故答案為:0.1.【點睛】本題主要考查概率的意義、等可能事件的概率,大量重復試驗事件發(fā)生的頻率約等于概率.15、(﹣3,9)【分析】根據(jù)二次函數(shù)性質可得出點A1的坐標,求得直線A1A2為y=x+2,聯(lián)立方程求得A2的坐標,即可求得A3的坐標,同理求得A4的坐標,即可求得A5的坐標.【詳解】∵A點坐標為(1,1),∴直線OA為y=x,A1(﹣1,1),∵A1A2∥OA,∴直線A1A2為y=x+2,解得:或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直線A3A4為y=x+6,解得:或,∴A4(3,9),∴A5(﹣3,9),故答案為:(﹣3,9).【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、一次函數(shù)的圖象以及交點的坐標,根據(jù)坐標的變化找出變化規(guī)律是解題的關鍵.16、【分析】根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、80°.【分析】由將△OAB繞點O逆時針旋轉100°得到△OA1B1,可求得∠A1OA的度數(shù),繼而求得答案.【詳解】∵將△OAB繞點O逆時針旋轉100°得到△OA1B1,∴∠A1OA=100°,∵∠AOB=20°,∴∠A1OB=∠A1OA﹣∠AOB=80°.故答案為:80°.【點睛】此題考查了旋轉的性質.注意找到旋轉角是解此題的關鍵.18、【分析】直接利用特殊角的三角函數(shù)值代入求出答案.【詳解】原式=×.故答案為:.【點睛】本題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.三、解答題(共66分)19、(1)y=x2-2x-1.(2)M(1,-2).(1P(1,-4).【解析】分析:(1)根據(jù)拋物線的對稱軸可求出B點的坐標,進而可用待定系數(shù)法求出拋物線的解析式;(2)由于A、B關于拋物線的對稱軸直線對稱,若連接BC,那么BC與直線x=1的交點即為所求的點M;可先求出直線BC的解析式,聯(lián)立拋物線對稱軸方程即可求得M點的坐標;(1)若∠PCB=90°,根據(jù)△BCO為等腰直角三角形,可推出△CDP為等腰直角三角形,根據(jù)線段長度求P點坐標.詳解:(1)∵拋物線的對稱軸為x=1,且A(﹣1,0),∴B(1,0);可設拋物線的解析式為y=a(x+1)(x﹣1),由于拋物線經過C(0,﹣1),則有:a(0+1)(0﹣1)=﹣1,a=1,∴y=(x+1)(x﹣1)=x2﹣2x﹣1;(2)由于A、B關于拋物線的對稱軸直線x=1對稱,那么M點為直線BC與x=1的交點;由于直線BC經過C(0,﹣1),可設其解析式為y=kx﹣1,則有:1k﹣1=0,k=1;∴直線BC的解析式為y=x﹣1;當x=1時,y=x﹣1=﹣2,即M(1,﹣2);(1)設經過C點且與直線BC垂直的直線為直線l,作PD⊥y軸,垂足為D;∵OB=OC=1,∴CD=DP=1,OD=OC+CD=4,∴P(1,﹣4).點睛:本題考查了二次函數(shù)解析式的確定、軸對稱的性質以及特殊三角形的性質等知識,難度適中.20、2m【詳解】解:設道路的寬為xm,(32-x)(20-x)=540,整理,得x2-52x+100=0,∴(x-50)(x-2)=0,∴x1=2,x2=50(不合題意,舍去),小道的寬應是2m.故答案為2.【點睛】此題應熟記長方形的面積公式,另外求出4塊試驗田平移為一個長方形的長和寬是解決本題的關鍵.21、x1=3﹣,x2=3+.【分析】根據(jù)配方法,可得方程的解.【詳解】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x1=3﹣,x2=3+.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知配方法解方程.22、48mm【分析】設正方形的邊長為x,表示出AI的長度,然后根據(jù)相似三角形對應高的比等于相似比列出比例式,然后進行計算即可得解.【詳解】設正方形的邊長為xmm,則AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,解得x=48mm,∴這個正方形零件的邊長是48mm.【點睛】本題主要考查了相似三角形判定與性質的綜合運用,熟練掌握相關概念是解題關鍵.23、電線桿子的高為4米.【分析】作CG⊥AB于G,可得矩形BDCG,利用同一時刻物高與影長的比一定得到AG的長度,加上GB的長度即為電線桿AB的高度.【詳解】過C點作CG⊥AB于點G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===2,∴AB=AG+GB=2+2=4(米),答:電線桿子的高為4米.【點睛】此題考查了相似三角形的應用,構造出直角三角形進行求解是解決本題的難點;用到的知識點為:同一時刻物高與影長的比一定.24、1.05里【分析】首先根據(jù)題意得到△GEA∽△AFH,然后利用相似三角形的對應邊的比相等列出比例式求得答案即可.【詳解】∵EG⊥AB,F(xiàn)H⊥AD,HG經過點A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版食品配送行業(yè)質量監(jiān)管合同規(guī)范3篇
- 2025版石灰購銷合同范本(節(jié)能環(huán)保)3篇
- 二零二五版?zhèn)€人房產租賃擔保合同模板2篇
- 二零二五年度管道運輸雙方合同:油氣輸送標準協(xié)議3篇
- 二零二五個人房產測繪合同規(guī)范范本2篇
- 二零二五年度建筑施工HSE風險防控與管理合同3篇
- 綠化改造整改方案
- 二零二五版土地利用現(xiàn)狀變更測量合同協(xié)議3篇
- 浙江排水檢查井施工方案
- 高鐵橋下柵欄安裝施工方案
- 充電樁知識培訓課件
- 2025水利云播五大員考試題庫(含答案)
- 老年髖部骨折患者圍術期下肢深靜脈血栓基礎預防專家共識(2024版)解讀
- 偏癱足內翻的治療
- 四合一體系基礎知識培訓課件
- ICD-9-CM-3手術與操作國家臨床版亞目表
- 小學語文教師基本功大賽試卷及答案
- 汽車電氣設備檢測與維修中職全套教學課件
- 《鐵路超限超重貨物運輸規(guī)則》(2016)260
- DB35T 1345-2013蘭壽系列金魚養(yǎng)殖技術規(guī)范
- 工行網(wǎng)銀代發(fā)工資操作流程
評論
0/150
提交評論