河南省許昌市平頂山第一中學高二數(shù)學理聯(lián)考試題含解析_第1頁
河南省許昌市平頂山第一中學高二數(shù)學理聯(lián)考試題含解析_第2頁
河南省許昌市平頂山第一中學高二數(shù)學理聯(lián)考試題含解析_第3頁
河南省許昌市平頂山第一中學高二數(shù)學理聯(lián)考試題含解析_第4頁
河南省許昌市平頂山第一中學高二數(shù)學理聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省許昌市平頂山第一中學高二數(shù)學理聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設(shè)i是虛數(shù)單位,若復數(shù)a-(a∈R)是純虛數(shù),則a的值為()A.-3

B.-1 C.1

D.3參考答案:D2.經(jīng)一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為x,第二次出現(xiàn)的點數(shù)為y,則事件x+y3的概率為(

)A.

B.

C.

D.

參考答案:A3.已知矩形的邊長滿足,則矩形面積的最大值為

(A)3

(B)6

(C)8

(D)9參考答案:A略4.已知函數(shù),若a是從1,2,3三個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),則該函數(shù)有兩個極值點的概率為(

) A. B. C. D.參考答案:D考點:古典概型及其概率計算公式.專題:計算題;概率與統(tǒng)計.分析:由極值的知識結(jié)合二次函數(shù)可得a>b,由分步計數(shù)原理可得總的方法種數(shù),列舉可得滿足題意的事件個數(shù),由概率公式可得.解答: 解:求導數(shù)可得f′(x)=x2+2ax+b2,要滿足題意需x2+2ax+b2=0有兩不等實根,即△=4(a2﹣b2)>0,即a>b,又a,b的取法共3×3=9種,其中滿足a>b的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2)共6種,故所求的概率為P=故選D點評:本題考查古典概型及其概率公式,涉及函數(shù)的極值問題,屬基礎(chǔ)題.5.在拋物線y2=2px上,橫坐標為4的點到焦點的距離為5,則p的值為(

A.

B.1

C.4

D.2參考答案:D略6.設(shè)等差數(shù)列{an}的前n項和為Sn,若a1=-11,a4+a6=-6,則當Sn取最小值時,n等于()A.6 B.7 C.8 D.9參考答案:A分析:條件已提供了首項,故用“a1,d”法,再轉(zhuǎn)化為關(guān)于n的二次函數(shù)解得.解答:解:設(shè)該數(shù)列的公差為d,則a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,所以Sn=-11n+×2=n2-12n=(n-6)2-36,所以當n=6時,Sn取最小值.故選A點評:本題考查等差數(shù)列的通項公式以及前n項和公式的應(yīng)用,考查二次函數(shù)最值的求法及計算能力.7.如圖所示,邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機撒一粒芝麻,它落在陰影區(qū)域內(nèi)的概率為,則陰影區(qū)域的面積為(

)A.

B.

C.

D.無法計算參考答案:C8.“關(guān)于的不等式對于一切實數(shù)都成立”是“”的A.充要條件 B.充分非必要條件C.必要非充分條件 D.既非充分又非必要條件參考答案:C9.將函數(shù)的圖象向右平移個單位長度,再向上平移1個單位長度,所得的圖象對應(yīng)的函數(shù)解析式為

A.

B.

C.

D.參考答案:C略10.設(shè)變量x,y滿足約束條件,則目標函數(shù)的最大值為(A)10

(B)11

(C)12

(D)14參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)f(x)=ax(a>0,a≠1)在[1,2]中的最大值比最小值大,則a的值為

.參考答案:0.5或1.512.在四棱柱ABCD﹣A′B′C′D′中,AA′⊥底面ABCD,四邊形ABCD為梯形,AD∥BC且AD=AA′=2BC.過A′,C,D三點的平面與BB′交于點E,F(xiàn),G分別為CC′,A′D′的中點(如圖所示)給出以下判斷:①E為BB′的中點;②直線A′E和直線FG是異面直線;③直線FG∥平面A′CD;④若AD⊥CD,則平面ABF⊥平面A′CD;⑤幾何體EBC﹣A′AD是棱臺.其中正確的結(jié)論是.(將正確的結(jié)論的序號全填上)參考答案:①③④⑤考點:空間中直線與直線之間的位置關(guān)系;棱柱的結(jié)構(gòu)特征.專題:空間位置關(guān)系與距離.分析:利用四棱柱的性質(zhì),結(jié)合線面關(guān)系、面面關(guān)系定理對選項分別分析解答.解答:解:對于①,∵四棱柱ABCD﹣A1B1C1D1中,四邊形ABCD為梯形,AD∥BC,∴平面EBC∥平面A1D1DA,∴平面A1CD與面EBC、平面A1D1DA的交線平行,∴EC∥A1D∴△EBC∽△A1AD,∴,∴E為BB1的中點;故①正確;對于②,因為E,F(xiàn)都是棱的中點,所以EF∥B'C',又B'C'∥A'D',所以EF∥A'D',所以A'E,F(xiàn)G都在平面EFD'A'中;故②錯誤;對于③,由②可得EF∥A'G,EF=A'G,所以四邊形A'EFG是平行四邊形,所以FG∥A'E,又A'E?平面A'CD中,F(xiàn)G?平面A'CD,所以直線FG∥平面A′CD正確;對于④,連接AD',容易得到BF∥AD',所以ABFD'四點共面,因為AD⊥CD,AD'在底面的射影為AD,所以CD⊥AD',又AD'⊥BF,所以BF⊥CD,又BF⊥CE,所以BF⊥平面A'CD,BF?平面ABFD',所以平面ABF⊥平面A′CD;故④正確;對于⑤,由④得到,AB與D'F,DC交于一點,所以幾何體EBC﹣A′AD是棱臺.故⑤正確;故答案為:①③④⑤.點評:本題考查了三棱柱的性質(zhì)的運用以及其中的線面關(guān)系和面面關(guān)系的判斷,比較綜合.13.已知直線過點P,當直線與圓有兩個交點時,其斜率k的取值范圍是

。參考答案:14.若復數(shù)為實數(shù),則實數(shù)___▲_____;參考答案:略15.直線過點,傾斜角是,且與直線交于,則的長為

。參考答案:16.若滿足,則的最大值

.參考答案:217.已知向量則的坐標是

.

參考答案:(-7,-1)略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知橢圓C:上一點到它的兩個焦點(左),(右)的距離的和是6,(1)求橢圓C的離心率的值.(2)若軸,且在軸上的射影為點,求點的坐標.

參考答案:(1)---------2分

---------5分

(2)-------10分

略19.下面是描述求一元二次方程ax2+bx+c=0的根的過程的程序框圖,請問虛線框內(nèi)是什么結(jié)構(gòu)?參考答案:虛線框內(nèi)是一個條件結(jié)構(gòu).20.(本小題滿分13分)已知定點A(-3,0),兩動點B、C分別在y軸和x軸上運動,且滿足,(1)求動點Q的軌跡E的方程;(2)過點G(0,1)的直線l與軌跡E在x軸上部分交于M、N兩點,線段MN的垂直平分線與x軸交于D點,求D點橫坐標的取值范圍。參考答案:(本小題13分)解:(1)設(shè)點B、C、Q的坐標分別為(0,b)、(c,0)、(x,y),(2)設(shè)直線l的方程為x=k(y-1),代入軌跡E的方程y2=4x中,整理得y2-4ky+4k=0由已知得(4k)2-4×4k>0且k>0,解得k>1。由根與系數(shù)的關(guān)系可得MN的中點坐標為(k(2k-1),2k)。∴

線段MN垂直平分線方程為y-2k=k[x―k(2k―1)]。令y=0,得D點的橫坐標為x0=2k2-k+2?!?/p>

k>1,

x0>3,

D點的橫坐標的取值范圍為(3,+∞)。略21.如圖1,直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=2AB=4,BC=2.AE∥BC交CD于點E,點G,H分別在線段DA,DE上,且GH∥AE.將圖1中的△AED沿AE翻折,使平面ADE⊥平面ABCE(如圖2所示),連結(jié)BD、CD,AC、BE.(Ⅰ)求證:平面DAC⊥平面DEB;(Ⅱ)當三棱錐B﹣GHE的體積最大時,求直線BG與平面BCD所成角的正弦值.參考答案:【考點】直線與平面所成的角;棱柱、棱錐、棱臺的體積;平面與平面垂直的判定.【專題】空間位置關(guān)系與距離;空間角;空間向量及應(yīng)用.【分析】(Ⅰ)根據(jù)折疊前后的邊角關(guān)系可知道DE⊥底面ABCE,底面ABCE為正方形,從而得到AC⊥DE,AC⊥BE,根據(jù)線面垂直的判定定理即可得到AC⊥DBE,再根據(jù)面面垂直的判定定理得出平面DAC⊥平面DEB;(Ⅱ)根據(jù)已知條件知道三直線EA,EC,ED兩兩垂直,從而分別以這三直線為x,y,z軸建立空間直角坐標系,求出一些點的坐標,設(shè)EH=x,從而表示出HG=2﹣x,三棱錐B﹣GHE的高為AB=2,從而可表示出三棱錐B﹣GHE的體積V=,從而看出x=1時V最大,這時G為AD中點.從而可求G點坐標,求出向量坐標,可設(shè)平面BCD的法向量為={x,y,z},根據(jù)即可求出,設(shè)直線BG與平面BCD所成角為θ,而根據(jù)sinθ=求出sinθ.【解答】解:(Ⅰ)證明:∵AB∥CD,∠ABC=90°,CD=2AB=4;又AE∥BC交CD于點E;∴四邊形ABCE是邊長為2的正方形;∴AC⊥BE,DE⊥AE;又∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE;∴DE⊥平面ABCE;∵AC?平面ABCE,∴AC⊥DE;又DE∩BE=E;∴AC⊥平面DBE;∵AC?平面DAC;∴平面DAC⊥平面DEB;(Ⅱ)由(Ⅰ)知DE⊥平面ABCE,AE⊥EC;以E為原點,的方向為x軸,y軸,z軸的正方向建立如圖所示空間直角坐標系,則:A(2,0,0),B(2,2,0),C(0,2,0),D(0,0,2);設(shè)EH=x,則GH=DH=2﹣x(0<x<2);∵AB∥CE,∴AB⊥面DAE;∴=;∵0<x<2,∴x=1時,三棱錐B﹣GHE體積最大,此時,H為ED中點;∵GH∥AE,∴G也是AD的中點,∴G(1,0,1),;設(shè)是面BCD的法向量;則令y=1,得;設(shè)BG與面BCD所成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論