中考數(shù)學(xué)二輪復(fù)習(xí)考點提分特訓(xùn)專題08 圓與幾何綜合問題(解析版)_第1頁
中考數(shù)學(xué)二輪復(fù)習(xí)考點提分特訓(xùn)專題08 圓與幾何綜合問題(解析版)_第2頁
中考數(shù)學(xué)二輪復(fù)習(xí)考點提分特訓(xùn)專題08 圓與幾何綜合問題(解析版)_第3頁
中考數(shù)學(xué)二輪復(fù)習(xí)考點提分特訓(xùn)專題08 圓與幾何綜合問題(解析版)_第4頁
中考數(shù)學(xué)二輪復(fù)習(xí)考點提分特訓(xùn)專題08 圓與幾何綜合問題(解析版)_第5頁
已閱讀5頁,還剩84頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題08圓與幾何綜合問題一、【知識回顧】【思維導(dǎo)圖】二、【考點類型】考點1:切線的判定典例1:(2023·廣西柳州·統(tǒng)考模擬預(yù)測)如圖,在SKIPIF1<0中,SKIPIF1<0,以SKIPIF1<0為直徑的SKIPIF1<0分別交SKIPIF1<0邊于點D、F.過點D作SKIPIF1<0于點E(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0半徑為5,且SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析(2)2【分析】(1)連接SKIPIF1<0,根據(jù)SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,即有SKIPIF1<0,可證SKIPIF1<0,再根據(jù)SKIPIF1<0可得SKIPIF1<0,則可得SKIPIF1<0且SKIPIF1<0為SKIPIF1<0的半徑,可得SKIPIF1<0是SKIPIF1<0的切線;(2)過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,根據(jù)SKIPIF1<0,根據(jù)垂徑定理可得SKIPIF1<0,又SKIPIF1<0,得四邊形SKIPIF1<0為矩形,則有SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,根據(jù)勾股定理求解即可.【詳解】(1)證明:連接SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0為SKIPIF1<0的半徑.SKIPIF1<0是SKIPIF1<0的切線.(2)過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,∴四邊形SKIPIF1<0為矩形,

SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0的長為2.【點睛】本題考查的是切線的判定與性質(zhì),垂徑定理,矩形的判定與性質(zhì),勾股定理等知識點,掌握切線的判定定理、垂徑定理是解題的關(guān)鍵.【變式1】(2023秋·河南信陽·九年級統(tǒng)考期末)如圖,SKIPIF1<0是⊙O的直徑,四邊形SKIPIF1<0內(nèi)接于⊙O,D是SKIPIF1<0的中點,SKIPIF1<0交SKIPIF1<0的延長線于點E.(1)求證:SKIPIF1<0是⊙O的切線;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析(2)1【分析】(1)要證明SKIPIF1<0是⊙O的切線,所以連接SKIPIF1<0,求出SKIPIF1<0即可,根據(jù)已知SKIPIF1<0,可得SKIPIF1<0,所以只要證明SKIPIF1<0即可解答;(2)由(1)可得SKIPIF1<0平分SKIPIF1<0,所以想到過點D作SKIPIF1<0,垂足為F,進(jìn)而證明SKIPIF1<0,可得SKIPIF1<0,易證SKIPIF1<0,可得SKIPIF1<0,然后進(jìn)行計算即可解答.【詳解】(1)證明:連接SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是⊙O的半徑,SKIPIF1<0是⊙O的切線.(2)過點D作SKIPIF1<0,垂足為F,由(1)得:SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0內(nèi)接于⊙O,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即:SKIPIF1<0.【點睛】本題考查了切線的判定,圓周角定理,圓內(nèi)接四邊形性質(zhì),全等三角形的證明,添加輔助線是解題的關(guān)鍵.【變式2】(2021·遼寧錦州·統(tǒng)考中考真題)如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點C作CE⊥AD交AD的延長線于點E,延長EC,AB交于點F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.【答案】(1)見解析;(2)⊙O的半徑是4.5【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內(nèi)接于⊙O,得SKIPIF1<0,再根據(jù)等量代換和直角三角形的性質(zhì)可得SKIPIF1<0,由切線的判定可得結(jié)論;(2)如圖2,過點O作SKIPIF1<0于G,連接OC,OD,則SKIPIF1<0,先根據(jù)三個角是直角的四邊形是矩形得四邊形OGEC是矩形,設(shè)⊙O的半徑為x,根據(jù)勾股定理列方程可得結(jié)論.【詳解】(1)證明:如圖1,連接OC,∵SKIPIF1<0,∴SKIPIF1<0,∵四邊形ABCD內(nèi)接于⊙O,∴SKIPIF1<0又SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵OC是⊙O的半徑,∴CE為⊙O的切線;(2)解:如圖2,過點O作SKIPIF1<0于G,連接OC,OD,則SKIPIF1<0,∵SKIPIF1<0,∴四邊形OGEC是矩形,∴SKIPIF1<0,設(shè)⊙O的半徑為x,Rt△CDE中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由勾股定理得SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴⊙O的半徑是4.5.【點睛】本題考查的是圓的綜合,涉及到圓的切線的證明、勾股定理以及矩形的性質(zhì),熟練掌握相關(guān)性質(zhì)是解決問題的關(guān)鍵.【變式3】(2023·四川瀘州·統(tǒng)考一模)如圖,已知SKIPIF1<0內(nèi)接于SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0的平分線交SKIPIF1<0于點SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0交SKIPIF1<0的延長線于點SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求證:SKIPIF1<0是SKIPIF1<0的切線;(3)若SKIPIF1<0,求SKIPIF1<0的半徑和SKIPIF1<0的長.【答案】(1)見解析(2)見解析(3)15,SKIPIF1<0【分析】(1)由圓周角定理及已知條件進(jìn)行等量代換,然后利用內(nèi)錯角相等兩直線平行證明即可.(2)利用角平分線及圓周角定理得出SKIPIF1<0是SKIPIF1<0的中點,再利用垂徑定理及平行線的性質(zhì)推導(dǎo)得出SKIPIF1<0為直角,即可證明.(3)先證明SKIPIF1<0,然后利用勾股定理計算得出SKIPIF1<0的長,再利用平行線所截線段成比例求出SKIPIF1<0.【詳解】(1)證明:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)證明:連接SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的半徑,∴SKIPIF1<0是SKIPIF1<0的切線;(3)解:如圖,設(shè)SKIPIF1<0的半徑為SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,由勾股定理,得SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0的半徑為15;∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直徑,∴SKIPIF1<0,在SKIPIF1<0中,由勾股定理,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.方法二:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的半徑為15;求SKIPIF1<0長的步驟同上.【點睛】本題主要考查平行的判定,圓周角定理,垂徑定理,勾股定理,切線的證明以及相似三角形,掌握切線的證明,相似三角形的判定及計算是解決本題的關(guān)鍵.考點2:與線段有關(guān)的問題典例2:(遼寧省大連市金普新區(qū)2022-2023學(xué)年九年級上學(xué)期數(shù)學(xué)期末試卷)如圖,以SKIPIF1<0的邊SKIPIF1<0為直徑作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0且SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長度.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)由四邊形SKIPIF1<0內(nèi)接于SKIPIF1<0,得出SKIPIF1<0,根據(jù)已知SKIPIF1<0,得出SKIPIF1<0,又SKIPIF1<0,得出SKIPIF1<0,等量代換得出SKIPIF1<0,根據(jù)等角對等邊,即可得證;(2)根據(jù)SKIPIF1<0為直徑,得出SKIPIF1<0,根據(jù)已知以及(1)的結(jié)論,得出SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,根據(jù)SKIPIF1<0相等,根據(jù)勾股定理列出方程,解方程即可求解.【詳解】(1)證明:∵四邊形SKIPIF1<0內(nèi)接于SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:如圖所示,連接SKIPIF1<0,∵SKIPIF1<0為直徑,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由(1)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由(1)可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0.【點睛】本題考查了圓內(nèi)接四邊形對角互補,直徑所對的圓周角是直角,勾股定理,等腰三角形的性質(zhì)與判定,綜合運用以上知識是解題的關(guān)鍵.【變式1】(2023秋·山東濱州·九年級統(tǒng)考期末)如圖,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線,SKIPIF1<0,SKIPIF1<0為切點,SKIPIF1<0是SKIPIF1<0的直徑,連接SKIPIF1<0、SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.求證:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)見解析(2)見解析【分析】(1)根據(jù)切線長定理得出SKIPIF1<0,SKIPIF1<0,根據(jù)三線合一得出SKIPIF1<0,根據(jù)SKIPIF1<0是SKIPIF1<0的直徑,得出SKIPIF1<0,即可得證;(2)根據(jù)(1)的結(jié)論得出SKIPIF1<0,進(jìn)而得出SKIPIF1<0,證明SKIPIF1<0得出SKIPIF1<0,即可得證.【詳解】(1)證明:∵SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直徑∴SKIPIF1<0,∴SKIPIF1<0;(2)證明:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.【點睛】本題考查了切線長定理,相似三角形的性質(zhì)與判定,掌握以上知識是解題的關(guān)鍵.【變式2】(2022·江西萍鄉(xiāng)·??寄M預(yù)測)如圖,SKIPIF1<0是SKIPIF1<0的外接圓,SKIPIF1<0,SKIPIF1<0,P是SKIPIF1<0上的一動點.(1)當(dāng)SKIPIF1<0的度數(shù)為多少時,SKIPIF1<0;(2)若以動點P為切點的切線為SKIPIF1<0,那么當(dāng)SKIPIF1<0的度數(shù)為多少時,切線SKIPIF1<0與SKIPIF1<0一邊平行?【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)三角形內(nèi)角和定理可得SKIPIF1<0,再由SKIPIF1<0,可得SKIPIF1<0,再由圓周角定理,即可求解;(2)分三種情況:當(dāng)SKIPIF1<0時,連接SKIPIF1<0;當(dāng)SKIPIF1<0時,連接SKIPIF1<0,SKIPIF1<0,并反向延長SKIPIF1<0,交SKIPIF1<0于點E;當(dāng)SKIPIF1<0時,反向延長SKIPIF1<0,交SKIPIF1<0于點F,連接SKIPIF1<0,結(jié)合切線的性質(zhì),垂徑定理以及圓周角定理,即可求解.【詳解】(1)解:在SKIPIF1<0中,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0;(2)解:①如圖2,當(dāng)SKIPIF1<0時,連接SKIPIF1<0,∵SKIPIF1<0切SKIPIF1<0于點P,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是半徑,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;②如圖3,當(dāng)SKIPIF1<0時,連接SKIPIF1<0,SKIPIF1<0,并反向延長SKIPIF1<0,交SKIPIF1<0于點E,∵SKIPIF1<0切SKIPIF1<0于點P,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;③如圖4,當(dāng)SKIPIF1<0時,反向延長SKIPIF1<0,交SKIPIF1<0于點F,連接SKIPIF1<0,∵SKIPIF1<0切SKIPIF1<0于點P,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;終上所述,SKIPIF1<0的度數(shù)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點睛】本題主要考查了圓周角定理,切線的性質(zhì),垂徑定理,三角內(nèi)角和定理等知識,熟練掌握圓周角定理,切線的性質(zhì),垂徑定理,利用分類討論思想解答是解題的關(guān)鍵.【變式3】(2023春·安徽合肥·九年級合肥壽春中學(xué)??茧A段練習(xí))如圖,在SKIPIF1<0中,直徑為SKIPIF1<0,正方形SKIPIF1<0的四個頂點分別在半徑SKIPIF1<0、SKIPIF1<0以及SKIPIF1<0上,并且SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的長度;(2)若半徑是5,求正方形SKIPIF1<0的邊長.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由四邊形SKIPIF1<0為正方形,得SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0,再連接SKIPIF1<0,構(gòu)造直角三角形,求出SKIPIF1<0和SKIPIF1<0的長,然后利用勾股定理即可求出圓的半徑,可得SKIPIF1<0.(2)證出SKIPIF1<0是等腰直角三角形,得出SKIPIF1<0,求出SKIPIF1<0,連接SKIPIF1<0,得出SKIPIF1<0,再根據(jù)勾股定理求出SKIPIF1<0的長即可.【詳解】(1)解:SKIPIF1<0四邊形SKIPIF1<0為正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0為直角三角形,∴SKIPIF1<0,∴即SKIPIF1<0的半徑為SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,則正方形SKIPIF1<0的邊長為SKIPIF1<0.【點睛】此題考查了圓的性質(zhì),正方形的性質(zhì)和等腰直角三角形的性質(zhì),解題的關(guān)鍵是證出SKIPIF1<0是等腰直角三角形,得出SKIPIF1<0,作出輔助線,利用勾股定理求解.考點3:與角度有關(guān)的問題典例3:(2022·北京·統(tǒng)考中考真題)如圖,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0是SKIPIF1<0的一條弦,SKIPIF1<0連接SKIPIF1<0(1)求證:SKIPIF1<0(2)連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延長線于點SKIPIF1<0,延長SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0的中點,求證:直線SKIPIF1<0為SKIPIF1<0的切線.【答案】(1)答案見解析(2)答案見解析【分析】(1)設(shè)SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0,故可得SKIPIF1<0,于是SKIPIF1<0,即可得到SKIPIF1<0;(2)連接AD,解出SKIPIF1<0,根據(jù)SKIPIF1<0為直徑得到SKIPIF1<0,進(jìn)而得到SKIPIF1<0,即可證明SKIPIF1<0,故可證明直線SKIPIF1<0為SKIPIF1<0的切線.【詳解】(1)證明:設(shè)SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,由題可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)證明:連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理可得:SKIPIF1<0,SKIPIF1<0,∵點H是CD的中點,點F是AC的中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的直徑,

SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0為SKIPIF1<0的切線.【點睛】本題主要考查三角形全等的判定與性質(zhì),同弧所對的圓周角相等,圓周角定理,直線平行的判定與性質(zhì),三角形的內(nèi)角和公式,證明三角形全等以及證明平行線是解題的關(guān)鍵.【變式1】(2022·四川成都·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,以SKIPIF1<0為直徑作⊙SKIPIF1<0,交SKIPIF1<0邊于點SKIPIF1<0,在SKIPIF1<0上取一點SKIPIF1<0,使SKIPIF1<0,連接SKIPIF1<0,作射線SKIPIF1<0交SKIPIF1<0邊于點SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0及SKIPIF1<0的長.【答案】(1)見解析(2)BF=5,SKIPIF1<0【分析】(1)根據(jù)SKIPIF1<0中,SKIPIF1<0,得到∠A+∠B=∠ACF+∠BCF=90°,根據(jù)SKIPIF1<0,得到∠B=∠BCF,推出∠A=∠ACF;(2)根據(jù)∠B=∠BCF,∠A=∠ACF,得到AF=CF,BF=CF,推出AF=BF=SKIPIF1<0AB,根據(jù)SKIPIF1<0,AC=8,得到AB=10,得到BF=5,根據(jù)SKIPIF1<0,得到SKIPIF1<0,連接CD,根據(jù)BC是⊙O的直徑,得到∠BDC=90°,推出∠B+∠BCD=90°,推出∠A=∠BCD,得到SKIPIF1<0,推出SKIPIF1<0,得到SKIPIF1<0,根據(jù)∠FDE=∠BCE,∠B=∠BCE,得到∠FDE=∠B,推出DE∥BC,得到△FDE∽△FBC,推出SKIPIF1<0,得到SKIPIF1<0.【詳解】(1)解:∵SKIPIF1<0中,SKIPIF1<0,∴∠A+∠B=∠ACF+∠BCF=90°,∵SKIPIF1<0,∴∠B=∠BCF,∴∠A=∠ACF;(2)∵∠B=∠BCF,∠A=∠ACF∴AF=CF,BF=CF,∴AF=BF=SKIPIF1<0AB,∵SKIPIF1<0,AC=8,∴AB=10,∴BF=5,∵SKIPIF1<0,∴SKIPIF1<0,連接CD,∵BC是⊙O的直徑,∴∠BDC=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵∠FDE=∠BCE,∠B=∠BCE,∴∠FDE=∠B,∴DE∥BC,∴△FDE∽△FBC,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本題主要考查了圓周角,解直角三角形,勾股定理,相似三角形,解決問題的關(guān)鍵是熟練掌握圓周角定理及推論,運用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性質(zhì).【變式2】(2021·北京·統(tǒng)考中考真題)如圖,SKIPIF1<0是SKIPIF1<0的外接圓,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0于點SKIPIF1<0.(1)求證:SKIPIF1<0;(2)連接SKIPIF1<0并延長,交SKIPIF1<0于點SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0.若SKIPIF1<0的半徑為5,SKIPIF1<0,求SKIPIF1<0和SKIPIF1<0的長.【答案】(1)見詳解;(2)SKIPIF1<0,SKIPIF1<0【分析】(1)由題意易得SKIPIF1<0,然后問題可求證;(2)由題意可先作圖,由(1)可得點E為BC的中點,則有SKIPIF1<0,進(jìn)而可得SKIPIF1<0,然后根據(jù)相似三角形的性質(zhì)可進(jìn)行求解.【詳解】(1)證明:∵SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:由題意可得如圖所示:由(1)可得點E為BC的中點,∵點O是BG的中點,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0的半徑為5,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本題主要考查垂徑定理、三角形中位線及相似三角形的性質(zhì)與判定,熟練掌握垂徑定理、三角形中位線及相似三角形的性質(zhì)與判定是解題的關(guān)鍵.【變式3】(2020·上?!そy(tǒng)考中考真題)如圖,△ABC中,AB=AC,⊙O是△ABC的外接圓,BO的延長交邊AC于點D.(1)求證:∠BAC=2∠ABD;(2)當(dāng)△BCD是等腰三角形時,求∠BCD的大?。唬?)當(dāng)AD=2,CD=3時,求邊BC的長.【答案】(1)證明見解析;(2)∠BCD的值為67.5°或72°;(3)SKIPIF1<0.【分析】(1)連接OA.利用垂徑定理以及等腰三角形的性質(zhì)解決問題即可.(2)分三種情形:①若BD=CB,則∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,則∠CBD=∠CDB=3∠ABD.③若DB=DC,則D與A重合,這種情形不存在.分別利用三角形內(nèi)角和定理構(gòu)建方程求解即可.(3)如圖3中,作AESKIPIF1<0BC交BD的延長線于E.則SKIPIF1<0,進(jìn)而得到SKIPIF1<0,設(shè)OB=OA=4a,OH=3a,根據(jù)BH2=AB2-AH2=OB2-OH2,構(gòu)建方程求出a即可解決問題.【詳解】解:(1)連接OA,如下圖1所示:∵AB=AC,∴SKIPIF1<0=SKIPIF1<0,∴OA⊥BC,∴∠BAO=∠CAO.∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)如圖2中,延長AO交BC于H.①若BD=CB,則∠C=∠BDC=∠ABD+∠BAC=3∠ABD.∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD.∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,則∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,則D與A重合,這種情形不存在.綜上所述:∠C的值為67.5°或72°.(3)如圖3中,過A點作AESKIPIF1<0BC交BD的延長線于E.則SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,且BC=2BH,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,設(shè)OB=OA=4a,OH=3a.則在Rt△ABH和Rt△OBH中,∵BH2=AB2﹣AH2=OB2﹣OH2,∴25-49a2=16a2﹣9a2,∴a2=SKIPIF1<0,∴BH=SKIPIF1<0,∴BC=2BH=SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題屬于圓的綜合題,考查了垂徑定理,等腰三角形的性質(zhì),勾股定理解直角三角形,平行線分線段成比例定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.考點3:與三角函數(shù)有關(guān)的計算典例3:(2022·江蘇蘇州·蘇州市振華中學(xué)校??级#┤鐖D,AB是⊙O的弦,C為⊙O上一點,過點C作AB的垂線與AB的延長線交于點D,連接BO并延長,與⊙O交于點E,連接EC,SKIPIF1<0.(1)求證:CD是⊙O的切線;(2)若SKIPIF1<0,SKIPIF1<0,求AB的長.【答案】(1)見解析;(2)SKIPIF1<0.【分析】(1)連接OC,利用三角形的外角定理得到:SKIPIF1<0,因為SKIPIF1<0,可證明SKIPIF1<0,因為SKIPIF1<0,進(jìn)一步可得SKIPIF1<0;(2)分析可得:SKIPIF1<0,再利用同弧所對圓周角相等可知:SKIPIF1<0,利用SKIPIF1<0,SKIPIF1<0,即可求出AB.【詳解】(1)證明:連接OC,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴CD是⊙O的切線;(2)解:連接AC,BC,∵BE是⊙O的直徑,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本題考查切線的判定,解直角三角形,第(1)問證CD是⊙O的切線,關(guān)鍵是證明SKIPIF1<0;第(2)問的關(guān)鍵是證明SKIPIF1<0,SKIPIF1<0.【變式1】(2020·廣西柳州·統(tǒng)考中考真題)如圖,AB為⊙O的直徑,C為⊙O上的一點,連接AC、BC,OD⊥BC于點E,交⊙O于點D,連接CD、AD,AD與BC交于點F,CG與BA的延長線交于點G.(1)求證:△ACD∽△CFD;(2)若∠CDA=∠GCA,求證:CG為⊙O的切線;(3)若sin∠CAD=SKIPIF1<0,求tan∠CDA的值.【答案】(1)見解析;(2)見解析;(3)SKIPIF1<0.【分析】(1)由垂徑定理得SKIPIF1<0,由圓周角定理得∠CAD=∠FCD,再由公共角∠ADC=∠CDF,即可得出△ACD∽△CFD;(2)連接OC,由圓周角定理得∠ACB=90°,則∠ABC+∠CAB=90°,由等腰三角形的性質(zhì)得∠OBC=∠OCB,證出∠OCB=∠GCA,得出∠OCG=90°,即可得出結(jié)論;(3)連接BD,由圓周角定理得∠CAD=∠CBD,則sin∠CAD=sin∠CBD=SKIPIF1<0,設(shè)DE=x,OD=OB=r,則OE=r﹣x,BD=3x,由勾股定理得BE=SKIPIF1<0,則BC=2BE=SKIPIF1<0,在Rt△OBE中,由勾股定理得(r﹣x)2+(SKIPIF1<0)2=r2,解得r=SKIPIF1<0,則AB=2r=9x,由勾股定理求出AC=7x,由三角函數(shù)定義即可得出答案.【詳解】(1)證明:∵OD⊥BC,∴SKIPIF1<0,∴∠CAD=∠FCD,又∵∠ADC=∠CDF,∴△ACD∽△CFD;(2)證明:連接OC,如圖1所示:∵AB是⊙O的直徑,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∵OB=OC,∴∠OBC=∠OCB,∵∠CDA=∠OBC,∠CDA=∠GCA,∴∠OCB=∠GCA,∴∠OCG=∠GCA+∠OCA=∠OCB+∠OCA=90°,∴CG⊥OC,∵OC是⊙O的半徑,∴CG是⊙O的切線;(3)解:連接BD,如圖2所示:∵∠CAD=∠CBD,∵OD⊥BC,∴sin∠CAD=sin∠CBD=SKIPIF1<0,BE=CE,設(shè)DE=x,OD=OB=r,則OE=r﹣x,BD=3x在Rt△BDE中,BE=SKIPIF1<0,∴BC=2BE=SKIPIF1<0,在Rt△OBE中,OE2+BE2=OB2,即(r﹣x)2+(SKIPIF1<0)2=r2,,解得:r=SKIPIF1<0,∴AB=2r=9x,在Rt△ABC中,AC2+BC2=AB2,∴AC2+(SKIPIF1<0)2=(9x)2,∴AC=7x或AC=﹣7x(舍去),∴tan∠CDA=tan∠CBA=SKIPIF1<0=SKIPIF1<0.【點睛】本題考查了切線的判定,圓周角定理,垂徑定理,相似三角形的判定,三角函數(shù)等知識.本題綜合性比較強,熟練掌握圓周角定理,垂徑定理是解題的關(guān)鍵.【變式2】(2020·北京·統(tǒng)考中考真題)如圖,AB為⊙O的直徑,C為BA延長線上一點,CD是⊙O的切線,D為切點,OF⊥AD于點E,交CD于點F.(1)求證:∠ADC=∠AOF;(2)若sinC=SKIPIF1<0,BD=8,求EF的長.【答案】(1)見解析;(2)2.【分析】(1)連接OD,根據(jù)CD是⊙O的切線,可推出∠ADC+∠ODA=90°,根據(jù)OF⊥AD,∠AOF+∠DAO=90°,根據(jù)OD=OA,可得∠ODA=∠DAO,即可證明;(2)設(shè)半徑為r,根據(jù)在Rt△OCD中,SKIPIF1<0,可得SKIPIF1<0,AC=2r,由AB為⊙O的直徑,得出∠ADB=90°,再根據(jù)推出OF⊥AD,OF∥BD,然后由平行線分線段成比例定理可得SKIPIF1<0,求出OE,SKIPIF1<0,求出OF,即可求出EF.【詳解】(1)證明:連接OD,∵CD是⊙O的切線,∴OD⊥CD,∴∠ADC+∠ODA=90°,∵OF⊥AD,∴∠AOF+∠DAO=90°,∵OD=OA,∴∠ODA=∠DAO,∴∠ADC=∠AOF;(2)設(shè)半徑為r,在Rt△OCD中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵OA=r,∴AC=OC-OA=2r,∵AB為⊙O的直徑,∴∠ADB=90°,又∵OF⊥AD,∴OF∥BD,∴SKIPIF1<0,∴OE=4,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本題考查了平行線分線段成比例定理,銳角三角函數(shù),切線的性質(zhì),直徑所對的圓周角是90°,靈活運用知識點是解題關(guān)鍵.【變式3】(2022·四川成都·模擬預(yù)測)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點F在弧BC上,AF與CD交于點G,點H在DC的延長線上,且HG=HF,延長HF交AB的延長線于點M.(1)求證:HF是⊙O的切線;(2)若SKIPIF1<0,BM=1,求AF的長.【答案】(1)見解析(2)SKIPIF1<0【分析】(1)連接OF,根據(jù)CD⊥AB,可得∠A+∠AGE=90°,再由HG=HF,可得∠HFG=∠AGE,然后根據(jù)OA=OF,可得∠A=∠OFA,即可求證;(2)連接BF,先證得△BFM∽△FAM,可得SKIPIF1<0,再由SKIPIF1<0,可得OM=5,AM=9,AB=8,F(xiàn)M=3,從而得到SKIPIF1<0,然后由勾股定理,即可求解.【詳解】(1)證明:連接OF,∵CD⊥AB,∴∠AEG=90°,∴∠A+∠AGE=90°,∵HG=HF,∴∠HFG=∠HGF,∵∠HGF=∠AGE,∴∠HFG=∠AGE,∵OA=OF,∴∠A=∠OFA,∴∠OFA+∠HFG=90°,即∠OFH=90°,∴HF是⊙O的切線;(2)解:如圖,連接BF,由(1)得:∠OFM=90°,∴∠BFO+∠BFM=90°,∵AB是⊙O的直徑,∴∠AFB=90°,∴∠A+∠ABF=90°,∵OB=OF,∴∠ABF=∠BFO,∴∠BFM=∠A,∵∠M=∠M,∴△BFM∽△FAM,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵BM=1,OB=OF,∴SKIPIF1<0,解得:OF=4,∴OM=5,AM=9,AB=8,∴FM=SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0.【點睛】本題主要考查了圓的綜合題,熟練掌握切線的判定,相似三角形的判定和性質(zhì),理解銳角三角函數(shù)是解題的關(guān)鍵.鞏固訓(xùn)練一、單選題1.(2022秋·江蘇徐州·九年級??茧A段練習(xí))如圖,SKIPIF1<0的直徑SKIPIF1<0與弦SKIPIF1<0的延長線交于點SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)示意圖結(jié)合已知條件可得出SKIPIF1<0,因此,SKIPIF1<0,即可得出SKIPIF1<0,計算即可得出答案.【詳解】解:∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0故選:A.【點睛】本題考查的知識點是圓的綜合題目,根據(jù)示意圖得出SKIPIF1<0是解此題的關(guān)鍵.2.(2023春·九年級課時練習(xí))已知SKIPIF1<0過正方形SKIPIF1<0頂點SKIPIF1<0,SKIPIF1<0,且與SKIPIF1<0相切,若正方形邊長為SKIPIF1<0,則圓的半徑為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】作SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,在直角SKIPIF1<0中根據(jù)勾股定理即可得到一個關(guān)于半徑的方程,即可求得.【詳解】解析:如圖,作SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,設(shè)圓的半徑是SKIPIF1<0,則在直角SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.故選:B.【點睛】本題主要考查了切線的性質(zhì)、垂徑定理以及勾股定理,在圓的有關(guān)半徑、弦長、弦心距之間的計算一般要轉(zhuǎn)化為直角三角形的計算.3.(2017·山東青島·中考真題)如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°【答案】B【分析】連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.4.(2022秋·江蘇無錫·九年級??茧A段練習(xí))如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.且DC+DA=12,⊙O的直徑為20,則AB的長等于(

)A.8 B.12 C.16 D.18【答案】B【分析】過O作OF⊥AB,垂足為F,連接OC,根據(jù)圓的基本性質(zhì)和角平分線的定義,可得∠DAC=∠OCA,從而得到OC⊥CD,得到四邊形DCOF為矩形,從而得到OC=FD,OF=CD,然后設(shè)AD=x,則OF=CD=12-x,AF=10-x,在Rt△AOF中,由勾股定理得到AD=4,從而得到AF=6再由垂徑定理,即可求解.【詳解】解:過O作OF⊥AB,垂足為F,連接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴OC⊥CD,∴∠OCD=∠CDA=∠OFD=90°,∴四邊形DCOF為矩形,∴OC=FD,OF=CD,∵DC+DA=12,設(shè)AD=x,則OF=CD=12-x,∵⊙O的直徑為20,∴DF=OC=10,∴AF=10-x,在SKIPIF1<0中,由勾股定理得AF2+OF2=OA2,即(10-x)2+(12-x)2=102,解得:SKIPIF1<0(不合題意,舍去),∴AD=4,∴OF=8,∴SKIPIF1<0,∵OF⊥AB,由垂徑定理知,F(xiàn)為AB的中點,∴AB=2AF=12.故選:B【點睛】本題主要考查了圓的基本性質(zhì),勾股定理,垂徑定理,矩形的判定和性質(zhì),熟練掌握相關(guān)知識點是解題的關(guān)鍵.5.(2018秋·湖北武漢·九年級統(tǒng)考期中)如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于E,∠E=30°,交AB于點D,連接AE,則S△ADC∶S△ADE的比值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】C【詳解】試題解析:過C作CF⊥AB于F,連接OE,設(shè)AC=a,∵AB是SKIPIF1<0的直徑,SKIPIF1<0SKIPIF1<0SKIPIF1<0∵CE平分∠ACB交O于E,∴SKIPIF1<0=SKIPIF1<0,∴OE⊥AB,SKIPIF1<0SKIPIF1<0故選C.6.(2022春·九年級課時練習(xí))如圖,圓SKIPIF1<0的兩條弦SKIPIF1<0相交于點SKIPIF1<0和SKIPIF1<0的延長線交于點SKIPIF1<0,下列結(jié)論中成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論