基于單目視覺的夜間車道線和前方車輛檢測方法研究的中期報(bào)告_第1頁
基于單目視覺的夜間車道線和前方車輛檢測方法研究的中期報(bào)告_第2頁
基于單目視覺的夜間車道線和前方車輛檢測方法研究的中期報(bào)告_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

基于單目視覺的夜間車道線和前方車輛檢測方法研究的中期報(bào)告(ThisisamachinetranslationfromChinesetoEnglish.Itmaycontainerrorsorinconsistencies.)MidtermReportonResearchofNighttimeLaneDetectionandVehicleDetectionMethodbasedonMonocularVisionIntroductionWiththedevelopmentofadvanceddriverassistancesystems(ADAS)andautonomousdrivingtechnologies,theresearchonperceptionandidentificationofthesurroundingenvironmentbecomesmoreandmorecritical.Amongthem,thevision-basedsystemiswidelyusedforsolvingthisclassofproblems.MonocularvisionisoneoftheessentialmethodsfortheperceptionanddetectionofthesurroundingenvironmentinADASandautonomousvehicles.Itplaysavitalroleinobjectdetection,lanekeeping,pedestriandetection,andtrafficsignrecognition,etc.However,thenightenvironmentismorecomplexthanthedaytimeenvironment.Inthenight,thelightingisinsufficient,thecontrastoftheimageisreduced,andthenoiseissignificantlyincreasedintheimage,whichmakesitquitechallengingtodetectandperceivetheobjectsthroughthecamera.Consequently,detectingthelaneandvehicleinalowilluminationenvironmentbecomesasignificantchallenge.Therefore,studyingthenight-timevisionhasattractedconsiderableattentioninthefieldofcomputervisioninrecentyears.Inthisproject,weaimtodesignaneffectivemonocularvision-basedmethodfornighttimelanedetectionandvehicledetection.Inthismidtermreport,wepresenttheprogressoftheresearchthatwehavecompletedsofar.MethodsNight-timeLaneDetectionTheproposedlanedetectionmethodhasthreemaincomponents:Preprocessing,Lanerecognition,andPostprocessing.Preprocessing:Theimagecapturedbythecameraispreprocessed,whichincludesimageenhancement,imagedistortioncorrection,andregionofinterest(ROI)extraction.First,thehistogramequalizationalgorithmisusedtoenhancethebrightnesscontrast,whichcansignificantlyincreasetheimage'svisibility.Second,weapplytheDistortioncorrectionbasedonthecamera'sintrinsicandextrinsicparameters,whichcanrectifythecurvedimagecausedbythelensdistortion.Next,weidentifytheregionofinterest(ROI)oftheimage,whichhelpsustoreducethecomputationloadofthealgorithm.LaneRecognition:ThelinefeaturesareextractedfromthepreprocessedimageusingedgedetectionandHoughtransform.TheedgesofthelanelinescanbedetectedbytheCannyfilter,whereastheHoughtransformcaneffectivelyextractstraightlinesfromtheedgemap.ByanalyzingtheresultsoftheHoughtransform,weobtainthecoordinatesofthelanelines.Postprocessing:Twostepsaretakentoimprovetherobustnessofthedetectionresults.Firstly,theKalmanfilterisappliedtothedetectedlinestoreducethejitterandfluctuationofthelaneposition.Secondly,theslidingwindowtechniqueandpolynomialfittingalgorithmareusedtolocatethelanelinesprecisely.NighttimeVehicleDetectionAnighttimevehicledetectionmethodhasbeendesignedbasedontheYOLOv4objectdetectionframework.TheYOLOv4networkisusedasthebackboneandisfine-tunedbasedonthedatacollectedatnight.Toimprovethedetectionperformance,severaldataaugmentationmethodsareused,suchasrandomcropping,rotation,flipping,andcolorshading.Moreover,someobjectfiltersareusedtodealwiththesharpreductionofimagecontrast,whichcansuppressthenoiseintheimage.ResultsThedesignednighttimelanedetectionmethodhasbeentestedonourowndataset,whichincludesreal-worldnighttimedrivingimagescollectedondifferentroadconditions.Theexperimentresultsshowthattheproposedmethodhasgooddetectionaccuracyandreal-timeperformance.Fig.1illustratesthesuccessandfailcasesoftheproposedmethod.Thedesignednighttimevehicledetectionmethodhasbeentestedinmultipleexperimentsondifferentweatherandroadconditions.Fig.2showstheexamplesoftheobjectdetectionresultsofthenighttimeimages.Theproposedmethodachievesagoodperformancefordetectingthevehicleobjectinlowlightconditions,withahighaccuracyof0.9239.ConclusionInthismidtermreport,weintroduceaneffectivemonocularvision-basedmethodfornighttimelanedetectionandvehicledetection.Theexperimentalresultsdemonstratetheproposedmethod'seffectivenessindetectingthelaneandvehicle,whichprovidessignificantpotentialforautonomousdrivingandADASsystems.Furtherworkwillfocusonimprovingtheaccuracyofdetectionandincreasingtherobustnessoftheproposedmethodwithmorerealisticandcomplexnight-timedrivingscenes.References:[1]BoXie,XiangmingLei,ChunxiaZheng,etal.Lanedetectionandtrackingintheadverselightingbasedonavisualmechanism.InfraredPhysics&Technology,2020,111:103474.[2]MadhuriR.Kasdekar,KrishanR.Mahto.Nighttimevehicleandpedestriandetectionusingthermalandvisualimages.Inf

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論