版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
立體幾何專(zhuān)項(xiàng)練習(xí)1.(12分)如圖,三棱柱ABC-AxBxQ中,側(cè)面BBCC為菱形,AB丄BC(I)證明:AC=ABi:(II)若AC丄AB;,ZCBB;=60°,AB二BC.求二面角A?AB-C;的余弦值.旦A0丄平面2.(12分)如圖,三棱柱ABC-ABG中,側(cè)面BBCC為菱形,BE旦A0丄平面(1) 證明:B,C±AB;(2) 若AC±ABi,ZCBBx=60°?BC二1.求三棱柱ABC?的高.*TTE分別為線(xiàn)3.(13分)如題圖,三棱錐P-ABC中,PC丄平面ABC,PC二3,E分別為線(xiàn)2段AB.BC上的點(diǎn),且CD=DE二血,CE二2EB=2.(I)證明:DE丄平面PCD)求二面角A?PD?C的余弦值.
4.(12分)如圖,四邊形ABCD為菱形,NABC二120°,E,F是平面ABCD同一側(cè)的兩點(diǎn),BE丄平面ABCD,DF丄平而ABCD,BE二2DF,AE丄EC?(I) 證明:平面AEC丄平面AFC(II) 求直線(xiàn)AE與直線(xiàn)CF所成角的余弦值.5.(12分)如圖,在以A.B,C,D.E,F為頂點(diǎn)的五面體中,面ABEF為正方形.AF=2FD,ZAFD=90°,且二面角D-AF?E與二面角C-BE?F都是60。.(I) 證明平面ABEF丄平面EFDC;(II) 求二面角E-BC?A的余弦值.6.(12分)(2017?新課標(biāo)I)如圖,在四棱錐P?ABCD中,AB〃CD,且ZBAP=ZCDP=90°.(1) 證明:平面PAB丄平面PAD;(2) 若PA二PD二AB二DC,ZAPD=90°,求二面角A-PB?C的余弦值.7(本小題滿(mǎn)分12分)如圖,四邊形ABCD為正方形,分別為AD.BC的中點(diǎn),以£>戶(hù)為折痕把少戶(hù)。折起,使點(diǎn)C到達(dá)點(diǎn)P的位置,且FF丄BF.(1) 證明:平面FEF丄平面A3F。;(2) 求DP與平面ABFD所成角的正弦值.8.(12分)如圖,直四棱柱ABCD-AMD,的底面是菱形,狐二4,山兇2.£BAIA60°,E,M,.V分別是況,蹈,的中點(diǎn).(1) 證明:MN//平面GDEx(2) 求二面角A-MA^N的正弦值.
9.(12分)如圖,直四棱柱ABCD_ABM的底面是菱形,臘2,ZBAD=60°,E、M,」V分別是BC,B&,業(yè)力的中點(diǎn).(1) 證明:丑丫〃平面C.DEx(2) 求點(diǎn)。到平面以F的距離.10.如圖,D為圓維的頂點(diǎn),0是圓錐底面的圓心,AE為底面直徑,AE=AD.^ABC是底面的內(nèi)接正三角形,Q為上一點(diǎn),PO=^-DO.6
(1) 證明:QA丄平面PBC:(2) 求二面角B-PC-E的余弦值.如圖,己知三棱柱ABO個(gè)G的底面是正三角形,側(cè)面BBCC是矩形,?機(jī)£分別為3C,RG的中點(diǎn),戶(hù)為出f上一點(diǎn),過(guò)和尸的平面交部于呂交刃。于五AiACiAiACi11)證明:AAE監(jiān),且平面娜V丄蹈V(2)設(shè)。為△X0G的中心,若X?!ㄆ矫鍱&GF, AO-AB.求直線(xiàn)8礦與平面A.AMN所成角的正弦值.如圖.已知三棱柱ABC-ABG底面是正三角形,側(cè)面B玫CK是矩形?,N分別為BC,的中點(diǎn),戶(hù)為痼上一點(diǎn).過(guò)EG和尸的平而交部于E交刃。于汽(1) 證明:AAJ/MN.且平面&出為1平面ERCF:(2) 設(shè)。為呂G的中心,若應(yīng)t冊(cè)6,血〃平面由GF,ILZ.I^V=j,求四棱錐B-E&.GF的體枳.如圖.在三棱錐A-BCDM平面ABD丄平面BCD,AB=AD^。為BD的中點(diǎn).(1) 證明:。4丄CD;(2) 若△QCZ)是邊長(zhǎng)為1的等邊三角形,點(diǎn)E在棱AD上,DE=2EA,且二而角E—BC—D的大小為45°,求三棱錐A—BCD的體積.A14.己知直三棱柱ABC-A%;中,側(cè)面為正方形,AB=BC=2,E.F分別為AC和CC;的中點(diǎn),D為棱A用上的點(diǎn),BF丄.(1) 證明:BF丄DE;(2) 當(dāng)用。為何值時(shí),而B(niǎo)BQC與面。龐所成的二面角的正弦值最小?如圖?在直四校柱(側(cè)棱垂直于底面的棱柱)旭8-4月0".中,底面屈CO是菱形,且AB=^AAi=LE是凌AA的中點(diǎn),EC=j3(1)求證:丄平面EDC,(2)求二面角D-EC-B的大小.
如圖,底邊ABCD是邊長(zhǎng)為3的正方形,平面A班五丄平面ABCD.AF!IDE.AD±DE.AF=2^6.DE=3灰.FMEA BFMEA B求證:平面ACE 在ADE是否存在點(diǎn)E,使得平面SEF 在ADE是否存在點(diǎn)E,使得平面SEF丄平面ABCD.若存在,求出點(diǎn)5的位置;若不存在,請(qǐng)說(shuō)明理由. 求直線(xiàn)蹈與平面SBC所成角的正弦值.在線(xiàn)段AF上是否存在點(diǎn)M,使得二面角初一BE-D的大小為60“?若存在,求出竺的值;若不存在,請(qǐng)說(shuō)明理由.AF如圖,在四棱錐5-ABCD中,底面ABCD為矩形,△S4O為等腰直角三角形,SA=SD=2?,A8=2,F(xiàn)是BC的中點(diǎn),二面角S-AD-B的大小等于120°.18.北京大興國(guó)際機(jī)場(chǎng)的顯著特點(diǎn)之一是各種彎曲空間的運(yùn)用.刻畫(huà)空間的彎曲性是凡何研咒的重要內(nèi)容.用曲率刻畫(huà)空間彎曲性,規(guī)定:多面體頂點(diǎn)的曲率等于2/T與多面體在該點(diǎn)的面角之和的差(多面體的面的內(nèi)角叫做多面體的而角,角度用弧度制),多面體面上非頂點(diǎn)的曲率均為零,多面體的總曲率等于該多面體各頂點(diǎn)的曲率之和.例如:正四面體在每個(gè)頂點(diǎn)有3個(gè)面角,每個(gè)面角是:,所以正四面體在各頂點(diǎn)的曲率為2汗-3乂:二;r,故其總曲率為4刀.(1)求四棱錐的總曲率:(2)若多面體滿(mǎn)足:頂點(diǎn)數(shù)-棱數(shù)+面數(shù)=2,證明:這類(lèi)多面體的總曲率是常數(shù).19.如圖,四邊形MABCt,△ABC是等腰直角三角形,/AC方=90°,AAMC是邊長(zhǎng)為2的正三角形,以人C為折痕,將向上折疊到ADAC的位置,使D點(diǎn)在平面A5C內(nèi)的射影在上,再將ZXM4C向卜折疊到△以C的位置,使平面函C丄平面ABC,形成幾何體涸坦朮)8凰*與WV案皐洋'成¥般窸告舊9—(7場(chǎng)圍二'VygTDV金(Z):N『(7V業(yè)法〃八。:買(mǎi)孝(【),草中網(wǎng)。0"(JQ袖岫NM"QQTGV%09=avs7'紐爰刷乙實(shí)井郁酉cavils/‘巾V75gV—Q)gy毋密?chē)鈨?cè)'岳岡?iz団穽母網(wǎng)m—Q9—Q服業(yè)二滯(3):鬲碼陽(yáng)寸、草* 目厘蟲(chóng)〃』0域‘彳。9毋[草(【)25.25.如圖菱形ABCD中,ZABC=60。,AC與相交于點(diǎn)O,AE丄平面ABCD,23.23.在四棱^P-ABCD中,四邊形ABCD為正方形,平面0W丄平面ABCD,^PAB為等腰直角三角形,PALPB.AB=2 .求證:平面"C求證:平面"C丄平面PAC:設(shè)E為CD的中點(diǎn),求點(diǎn)廳到平面P8C的距離.24.如圖,在四棱維P—ABCD中,底面ABCD為菱形,平面〃。丄平面ABCD,PA丄PD,PA=PD,出。=:,E是線(xiàn)段AD的中點(diǎn),連結(jié)BE.ABAB(1)求證:BE丄PA;⑵求二面角A-PD-C的余弦值:PF(3)在線(xiàn)段地上是否存在點(diǎn)F,使得身7/平面PCD?若存在,求出兩的值;若不存在,說(shuō)明理由.CF//AE,AB=AE=4.求證:BD丄平面ACFE:當(dāng)直線(xiàn)廠(chǎng)。與平面8功所成的角為?時(shí),求異面直線(xiàn)好與BE所成的角的余弦債大4小?26.如圖所示,在梯形板刀中,AB//CD.ZBCD=1209,四邊形X。正為矩形,且津丄平面瘋。AD=CD=BC=CF.(1)求證:歐丄平面冊(cè)?:(2)點(diǎn)."在線(xiàn)段歐上運(yùn)動(dòng)?當(dāng)點(diǎn)."在什么位置時(shí),平面,施與平面砲所成的銳二面角最大,并求此時(shí)二面角的余弦值.如圖,在棱長(zhǎng)為2龍的正方形ABCD中,E,F分別為CD,80邊上的中點(diǎn),現(xiàn)將點(diǎn)C以E尸為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)一年級(jí)作文快樂(lè)的周末
- 2024年分子診斷試劑合作協(xié)議書(shū)
- 2 位置(教案)五年級(jí)上冊(cè)數(shù)學(xué)人教版
- 2024-2025高中地理模塊素養(yǎng)評(píng)價(jià)含解析新人教版必修3
- 2024-2025學(xué)年新教材高中地理第二章資源環(huán)境與區(qū)域發(fā)展2生態(tài)脆弱區(qū)的綜合治理學(xué)案新人教版選擇性必修2
- 2025屆高考地理一輪復(fù)習(xí)第十七章區(qū)際聯(lián)系與區(qū)域協(xié)調(diào)發(fā)展第1講資源的跨區(qū)域調(diào)配-以我國(guó)西氣東輸為例教案新人教版
- 玉溪師范學(xué)院《國(guó)畫(huà)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024安防監(jiān)控合同范本
- 2024年計(jì)算機(jī)典型應(yīng)用系統(tǒng)項(xiàng)目發(fā)展計(jì)劃
- 2024標(biāo)準(zhǔn)雇傭合同格式
- 樂(lè)理試題(音程-三和弦)
- 三資系統(tǒng)操作手冊(cè)
- 綿陽(yáng)市物業(yè)服務(wù)收費(fèi)管理實(shí)施細(xì)則
- 危險(xiǎn)化學(xué)品事故應(yīng)急處置流程圖
- 微信公眾賬號(hào)授權(quán)書(shū)
- 鈑金折彎K因子計(jì)算
- 生石灰(氧化鈣)MSDS
- 中高層管理干部能力提升(劉學(xué)元)ppt課件
- 公司兼職銷(xiāo)售人員管理制度.docx
- 夾套管施工方案最終
- 初中音樂(lè)-對(duì)花-課件-(2)PPT課件
評(píng)論
0/150
提交評(píng)論