基于MooneyRivlin模型和Yeoh模型的橡膠材料有限元分析_第1頁(yè)
基于MooneyRivlin模型和Yeoh模型的橡膠材料有限元分析_第2頁(yè)
基于MooneyRivlin模型和Yeoh模型的橡膠材料有限元分析_第3頁(yè)
基于MooneyRivlin模型和Yeoh模型的橡膠材料有限元分析_第4頁(yè)
基于MooneyRivlin模型和Yeoh模型的橡膠材料有限元分析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于MooneyRivlin模型和Yeoh模型的橡膠材料有限元分析一、本文概述Overviewofthisarticle隨著材料科學(xué)的不斷發(fā)展,橡膠材料作為一種重要的彈性體,在工程領(lǐng)域的應(yīng)用越來越廣泛。其獨(dú)特的力學(xué)性能和廣泛的應(yīng)用領(lǐng)域使得對(duì)其性能的研究和預(yù)測(cè)變得尤為重要。在橡膠材料的力學(xué)性能預(yù)測(cè)中,Mooney-Rivlin模型和Yeoh模型是兩種常用的本構(gòu)模型,它們能夠較好地描述橡膠材料的非線性彈性行為。本文旨在通過有限元分析的方法,對(duì)基于Mooney-Rivlin模型和Yeoh模型的橡膠材料力學(xué)性能進(jìn)行深入研究。Withthecontinuousdevelopmentofmaterialsscience,rubbermaterials,asanimportantelastomer,areincreasinglywidelyusedinthefieldofengineering.Itsuniquemechanicalpropertiesandwiderangeofapplicationsmaketheresearchandpredictionofitsperformanceparticularlyimportant.Inthepredictionofmechanicalpropertiesofrubbermaterials,MooneyRivlinmodelandYeohmodelaretwocommonlyusedconstitutivemodels,whichcanbetterdescribethenonlinearelasticbehaviorofrubbermaterials.Thisarticleaimstoconductin-depthresearchonthemechanicalpropertiesofrubbermaterialsbasedontheMooneyRivlinmodelandYeohmodelthroughfiniteelementanalysis.本文將介紹Mooney-Rivlin模型和Yeoh模型的基本理論,包括模型的建立、參數(shù)的確定以及模型的適用范圍。然后,將這兩種模型應(yīng)用于橡膠材料的有限元分析中,通過對(duì)比分析,探討兩種模型在預(yù)測(cè)橡膠材料力學(xué)性能方面的優(yōu)缺點(diǎn)。本文還將討論有限元分析在橡膠材料力學(xué)性能預(yù)測(cè)中的應(yīng)用,包括模型的建立、邊界條件的設(shè)定、網(wǎng)格劃分、求解過程以及結(jié)果的后處理等。ThisarticlewillintroducethebasictheoriesoftheMooneyRivlinmodelandYeohmodel,includingtheestablishmentofthemodel,determinationofparameters,andtheapplicabilityofthemodel.Then,thesetwomodelsareappliedtothefiniteelementanalysisofrubbermaterials,andthroughcomparativeanalysis,theadvantagesanddisadvantagesofthetwomodelsinpredictingthemechanicalpropertiesofrubbermaterialsareexplored.Thisarticlewillalsodiscusstheapplicationoffiniteelementanalysisinpredictingthemechanicalpropertiesofrubbermaterials,includingmodelestablishment,boundaryconditionsetting,meshdivision,solutionprocess,andpost-processingofresults.通過本文的研究,希望能夠?yàn)橄鹉z材料的力學(xué)性能預(yù)測(cè)提供更為準(zhǔn)確的理論依據(jù),為工程實(shí)踐提供指導(dǎo)。也希望能夠推動(dòng)有限元分析在材料科學(xué)領(lǐng)域的應(yīng)用和發(fā)展。Throughthisstudy,itishopedthatmoreaccuratetheoreticalbasiscanbeprovidedforpredictingthemechanicalpropertiesofrubbermaterials,andguidancecanbeprovidedforengineeringpractice.Ialsohopetopromotetheapplicationanddevelopmentoffiniteelementanalysisinthefieldofmaterialsscience.二、Mooney-Rivlin模型及其在橡膠材料中的應(yīng)用MooneyRivlinModelandItsApplicationinRubberMaterialsMooney-Rivlin模型是一種常用的橡膠材料本構(gòu)模型,它基于材料在變形過程中的能量變化來描述材料的力學(xué)行為。該模型由Mooney和Rivlin在20世紀(jì)40年代提出,具有簡(jiǎn)單、易于理解和應(yīng)用的特點(diǎn),因此在橡膠材料的有限元分析中得到了廣泛應(yīng)用。TheMooneyRivlinmodelisacommonlyusedconstitutivemodelforrubbermaterials,whichdescribesthemechanicalbehaviorofmaterialsbasedontheenergychangesduringdeformation.ThismodelwasproposedbyMooneyandRivlininthe1940sandhasthecharacteristicsofsimplicity,easeofunderstanding,andapplication.Therefore,ithasbeenwidelyusedinfiniteelementanalysisofrubbermaterials.Mooney-Rivlin模型假設(shè)橡膠材料的應(yīng)變能密度函數(shù)是應(yīng)變不變量的函數(shù),通常表示為W=C10(I1-3)+C01(I2-3),其中W是應(yīng)變能密度,I1和I2是第一和第二應(yīng)變不變量,C10和C01是材料常數(shù)。這個(gè)模型能夠較好地描述橡膠材料在小應(yīng)變范圍內(nèi)的力學(xué)行為,但對(duì)于大應(yīng)變情況,其預(yù)測(cè)結(jié)果可能會(huì)與實(shí)驗(yàn)結(jié)果存在一定的偏差。TheMooneyRivlinmodelassumesthatthestrainenergydensityfunctionofrubbermaterialsisafunctionofstraininvariants,typicallyexpressedasW=C10(I1-3)+C01(I2-3),whereWisthestrainenergydensity,I1andI2arethefirstandsecondstraininvariants,andC10andC01arematerialconstants.Thismodelcanwelldescribethemechanicalbehaviorofrubbermaterialsinasmallstrainrange,butforlargestrainsituations,itspredictedresultsmayhavesomedeviationfromexperimentalresults.在橡膠材料的有限元分析中,Mooney-Rivlin模型的應(yīng)用主要包括以下幾個(gè)步驟:通過實(shí)驗(yàn)測(cè)定橡膠材料的C10和C01值;然后,將這些值代入到有限元分析軟件中,作為材料的本構(gòu)模型;通過有限元分析計(jì)算,得到橡膠材料在受到不同載荷和邊界條件下的應(yīng)力、應(yīng)變和位移等力學(xué)響應(yīng)。Inthefiniteelementanalysisofrubbermaterials,theapplicationoftheMooneyRivlinmodelmainlyincludesthefollowingsteps:determiningtheC10andC01valuesofrubbermaterialsthroughexperiments;Then,thesevaluesareinputintothefiniteelementanalysissoftwareastheconstitutivemodelofthematerial;Byfiniteelementanalysisandcalculation,themechanicalresponsesofrubbermaterialsunderdifferentloadsandboundaryconditions,suchasstress,strain,anddisplacement,areobtained.Mooney-Rivlin模型在橡膠材料的有限元分析中具有廣泛的應(yīng)用場(chǎng)景。例如,在橡膠密封件、減震器、輪胎等橡膠制品的設(shè)計(jì)和制造過程中,可以通過有限元分析來模擬橡膠材料的力學(xué)行為,優(yōu)化產(chǎn)品設(shè)計(jì),提高產(chǎn)品質(zhì)量。在橡膠材料的力學(xué)性能測(cè)試和評(píng)估中,Mooney-Rivlin模型也可以作為一種有效的工具,用于評(píng)估材料的力學(xué)性能和可靠性。TheMooneyRivlinmodelhasawiderangeofapplicationscenariosinfiniteelementanalysisofrubbermaterials.Forexample,inthedesignandmanufacturingprocessofrubberproductssuchasrubberseals,shockabsorbers,andtires,finiteelementanalysiscanbeusedtosimulatethemechanicalbehaviorofrubbermaterials,optimizeproductdesign,andimproveproductquality.Inthetestingandevaluationofmechanicalpropertiesofrubbermaterials,theMooneyRivlinmodelcanalsoserveasaneffectivetoolforevaluatingthemechanicalpropertiesandreliabilityofmaterials.Mooney-Rivlin模型作為一種簡(jiǎn)單、有效的橡膠材料本構(gòu)模型,在橡膠材料的有限元分析中得到了廣泛的應(yīng)用。通過合理應(yīng)用該模型,可以實(shí)現(xiàn)對(duì)橡膠材料力學(xué)行為的準(zhǔn)確模擬和預(yù)測(cè),為橡膠制品的設(shè)計(jì)和制造提供有力支持。TheMooneyRivlinmodel,asasimpleandeffectiveconstitutivemodelforrubbermaterials,hasbeenwidelyusedinfiniteelementanalysisofrubbermaterials.Byapplyingthismodelreasonably,accuratesimulationandpredictionofthemechanicalbehaviorofrubbermaterialscanbeachieved,providingstrongsupportforthedesignandmanufacturingofrubberproducts.三、Yeoh模型及其在橡膠材料中的應(yīng)用YeohmodelanditsapplicationinrubbermaterialsYeoh模型是一種高階非線性彈性模型,用于描述橡膠等高分子材料的大變形行為。相較于Mooney-Rivlin模型,Yeoh模型考慮了更多的材料非線性,因此在大應(yīng)變范圍內(nèi)具有更高的精度。Yeoh模型的應(yīng)變能密度函數(shù)由三個(gè)主要部分組成:二次項(xiàng)、四次項(xiàng)和六次項(xiàng),這使其在大應(yīng)變范圍內(nèi)對(duì)材料的彈性行為進(jìn)行了更精確的描述。TheYeohmodelisahigh-ordernonlinearelasticmodelusedtodescribethelargedeformationbehaviorofpolymermaterialssuchasrubber.ComparedtotheMooneyRivlinmodel,theYeohmodelconsidersmorematerialnonlinearityandthereforehashigheraccuracyoveralargestrainrange.ThestrainenergydensityfunctionoftheYeohmodelconsistsofthreemaincomponents:quadratic,fourth-order,andsixthorder,whichprovidesamoreaccuratedescriptionofthematerial'selasticbehavioroveralargestrainrange.在橡膠材料的有限元分析中,Yeoh模型的應(yīng)用主要體現(xiàn)在以下幾個(gè)方面:Inthefiniteelementanalysisofrubbermaterials,theapplicationoftheYeohmodelismainlyreflectedinthefollowingaspects:材料參數(shù)識(shí)別:通過實(shí)驗(yàn)數(shù)據(jù),如單軸拉伸、雙軸拉伸和等雙軸拉伸等實(shí)驗(yàn),可以確定Yeoh模型的參數(shù)。這些參數(shù)為有限元分析提供了必要的材料屬性,使得模擬結(jié)果更加接近實(shí)際。Materialparameteridentification:TheparametersoftheYeohmodelcanbedeterminedthroughexperimentaldatasuchasuniaxialtension,biaxialtension,andequibiaxialtension.Theseparametersprovidenecessarymaterialpropertiesforfiniteelementanalysis,makingsimulationresultsclosertoreality.大變形模擬:由于Yeoh模型在高應(yīng)變范圍內(nèi)的精確性,它特別適用于橡膠材料在大變形情況下的有限元模擬,如橡膠密封件的壓縮、橡膠減震器的沖擊等。Largedeformationsimulation:DuetotheaccuracyoftheYeohmodelinthehighstrainrange,itisparticularlysuitableforfiniteelementsimulationofrubbermaterialsunderlargedeformationconditions,suchascompressionofrubbersealsandimpactofrubbershockabsorbers.多軸應(yīng)力狀態(tài)模擬:Yeoh模型能夠很好地描述橡膠材料在復(fù)雜應(yīng)力狀態(tài)下的行為,因此在模擬橡膠制品在復(fù)雜工作環(huán)境中的性能時(shí)具有顯著優(yōu)勢(shì)。Multiaxialstressstatesimulation:TheYeohmodelcanwelldescribethebehaviorofrubbermaterialsundercomplexstressstates,soithassignificantadvantagesinsimulatingtheperformanceofrubberproductsincomplexworkingenvironments.然而,Yeoh模型也存在一些局限性。例如,它主要適用于均勻、連續(xù)和高彈性的橡膠材料。對(duì)于非均勻、非連續(xù)或存在損傷的橡膠材料,Yeoh模型可能需要進(jìn)行修正或結(jié)合其他模型來更好地描述其行為。However,theYeohmodelalsohassomelimitations.Forexample,itismainlysuitableforuniform,continuous,andhighlyelasticrubbermaterials.Forrubbermaterialsthatarenon-uniform,discontinuous,orhavedamage,theYeohmodelmayneedtobemodifiedorcombinedwithothermodelstobetterdescribetheirbehavior.總體來說,Yeoh模型是橡膠材料有限元分析中一種重要的非線性彈性模型。通過合理應(yīng)用Yeoh模型,可以更準(zhǔn)確地預(yù)測(cè)橡膠材料在大變形和多軸應(yīng)力狀態(tài)下的行為,為橡膠制品的設(shè)計(jì)和優(yōu)化提供有力支持。Overall,theYeohmodelisanimportantnonlinearelasticmodelinfiniteelementanalysisofrubbermaterials.ByapplyingtheYeohmodelreasonably,itispossibletomoreaccuratelypredictthebehaviorofrubbermaterialsunderlargedeformationandmultiaxialstressstates,providingstrongsupportforthedesignandoptimizationofrubberproducts.四、Mooney-Rivlin模型與Yeoh模型的比較與討論ComparisonandDiscussionofMooneyRivlinModelandYeohModel在本節(jié)中,我們將詳細(xì)比較和討論Mooney-Rivlin模型和Yeoh模型在橡膠材料有限元分析中的應(yīng)用和性能。這兩種模型都是在橡膠力學(xué)領(lǐng)域廣泛使用的超彈性模型,它們各自具有獨(dú)特的特點(diǎn)和適用場(chǎng)景。Inthissection,wewillcompareanddiscussindetailtheapplicationandperformanceofMooneyRivlinmodelandYeohmodelinfiniteelementanalysisofrubbermaterials.Bothofthesemodelsarewidelyusedhyperelasticmodelsinthefieldofrubbermechanics,eachwithuniquecharacteristicsandapplicablescenarios.從數(shù)學(xué)表達(dá)式的角度來看,Mooney-Rivlin模型采用二次多項(xiàng)式來描述橡膠材料的應(yīng)變能密度,而Yeoh模型則采用三次多項(xiàng)式。這意味著Yeoh模型在描述大變形行為時(shí)可能具有更高的精度,因?yàn)樗軌虿东@更多的非線性特性。然而,Mooney-Rivlin模型的簡(jiǎn)單性使其在計(jì)算上更為高效,特別是在處理復(fù)雜結(jié)構(gòu)或大規(guī)模有限元分析時(shí)。Fromamathematicalexpressionperspective,theMooneyRivlinmodelusesaquadraticpolynomialtodescribethestrainenergydensityofrubbermaterials,whiletheYeohmodelusesacubicpolynomial.ThismeansthattheYeohmodelmayhavehigheraccuracyindescribinglargedeformationbehavior,asitcancapturemorenonlinearcharacteristics.However,thesimplicityoftheMooneyRivlinmodelmakesitmorecomputationallyefficient,especiallywhendealingwithcomplexstructuresorlarge-scalefiniteelementanalysis.從參數(shù)擬合的角度來看,Mooney-Rivlin模型通常需要較少的實(shí)驗(yàn)數(shù)據(jù)來進(jìn)行參數(shù)估計(jì),而Yeoh模型則需要更多的數(shù)據(jù)來確保擬合的準(zhǔn)確性。這意味著在實(shí)際應(yīng)用中,如果實(shí)驗(yàn)數(shù)據(jù)有限或質(zhì)量不高,Mooney-Rivlin模型可能更具優(yōu)勢(shì)。然而,隨著實(shí)驗(yàn)技術(shù)的進(jìn)步和數(shù)據(jù)質(zhì)量的提高,Yeoh模型可能會(huì)展現(xiàn)出更好的預(yù)測(cè)性能。Fromtheperspectiveofparameterfitting,MooneyRivlinmodelstypicallyrequirelessexperimentaldataforparameterestimation,whileYeohmodelsrequiremoredatatoensuretheaccuracyofthefitting.Thismeansthatinpracticalapplications,iftheexperimentaldataislimitedoroflowquality,theMooneyRivlinmodelmayhavemoreadvantages.However,withtheadvancementofexperimentaltechnologyandtheimprovementofdataquality,theYeohmodelmayexhibitbetterpredictiveperformance.在模型性能方面,Mooney-Rivlin模型通常在小到中等應(yīng)變范圍內(nèi)表現(xiàn)出良好的預(yù)測(cè)能力,但在大應(yīng)變條件下可能會(huì)出現(xiàn)偏差。相比之下,Yeoh模型在整個(gè)應(yīng)變范圍內(nèi)都具有較高的預(yù)測(cè)精度,特別是在大應(yīng)變條件下。因此,對(duì)于需要精確描述橡膠材料大變形行為的場(chǎng)景(如沖擊載荷、高度非線性變形等),Yeoh模型可能更為合適。Intermsofmodelperformance,MooneyRivlinmodelstypicallyexhibitgoodpredictiveabilityinthesmalltomediumstrainrange,butmayexhibitbiasesunderhighstrainconditions.Incontrast,theYeohmodelhashighpredictionaccuracythroughouttheentirestrainrange,especiallyunderhighstrainconditions.Therefore,forscenariosthatrequireprecisedescriptionofthelargedeformationbehaviorofrubbermaterials,suchasimpactloads,highlynonlineardeformations,etc.,theYeohmodelmaybemoresuitable.在有限元分析的應(yīng)用中,Mooney-Rivlin模型和Yeoh模型都可以與各種商業(yè)有限元軟件(如ABAQUS、ANSYS等)無縫集成,方便用戶進(jìn)行模擬和分析。然而,由于兩種模型在數(shù)值穩(wěn)定性和收斂性方面可能存在差異,因此在實(shí)際應(yīng)用中需要根據(jù)具體問題選擇合適的模型。Intheapplicationoffiniteelementanalysis,bothMooneyRivlinmodelandYeohmodelcanbeseamlesslyintegratedwithvariouscommercialfiniteelementsoftware(suchasABAQUS,ANSYS,etc.),makingitconvenientforuserstosimulateandanalyze.However,duetothepossibledifferencesinnumericalstabilityandconvergencebetweenthetwomodels,itisnecessarytochooseasuitablemodelbasedonspecificproblemsinpracticalapplications.Mooney-Rivlin模型和Yeoh模型在橡膠材料有限元分析中各有優(yōu)缺點(diǎn)。在選擇模型時(shí),需要綜合考慮數(shù)學(xué)表達(dá)式的復(fù)雜性、參數(shù)擬合的難易程度、模型性能以及有限元分析的具體需求。通過合理的模型選擇和應(yīng)用,我們可以更有效地預(yù)測(cè)和優(yōu)化橡膠材料的力學(xué)行為。TheMooneyRivlinmodelandYeohmodelhavetheirownadvantagesanddisadvantagesinfiniteelementanalysisofrubbermaterials.Whenselectingamodel,itisnecessarytocomprehensivelyconsiderthecomplexityofmathematicalexpressions,thedifficultyofparameterfitting,modelperformance,andthespecificrequirementsoffiniteelementanalysis.Throughreasonablemodelselectionandapplication,wecanmoreeffectivelypredictandoptimizethemechanicalbehaviorofrubbermaterials.五、結(jié)論與展望ConclusionandOutlook本文研究了基于Mooney-Rivlin模型和Yeoh模型的橡膠材料有限元分析。通過對(duì)兩種模型的理論基礎(chǔ)、模型參數(shù)確定方法以及在有限元分析中的應(yīng)用進(jìn)行詳細(xì)闡述,我們發(fā)現(xiàn)這兩種模型在橡膠材料的力學(xué)行為描述上均具有較高的精度和適用性。ThisarticleinvestigatesthefiniteelementanalysisofrubbermaterialsbasedontheMooneyRivlinmodelandYeohmodel.Byelaboratingonthetheoreticalbasis,parameterdeterminationmethods,andapplicationinfiniteelementanalysisofthetwomodels,wefoundthatbothmodelshavehighaccuracyandapplicabilityindescribingthemechanicalbehaviorofrubbermaterials.Mooney-Rivlin模型作為一種經(jīng)典的橡膠材料本構(gòu)模型,具有形式簡(jiǎn)單、參數(shù)易得等優(yōu)點(diǎn),適用于大多數(shù)橡膠材料的有限元分析。通過合理的參數(shù)確定方法,如基于單軸拉伸和等雙軸拉伸試驗(yàn)的數(shù)據(jù)擬合,可以得到較為準(zhǔn)確的模型參數(shù),進(jìn)而在有限元分析中準(zhǔn)確描述橡膠材料的力學(xué)行為。TheMooneyRivlinmodel,asaclassicconstitutivemodelforrubbermaterials,hastheadvantagesofsimpleformandeasyaccesstoparameters,makingitsuitableforfiniteelementanalysisofmostrubbermaterials.Byusingreasonableparameterdeterminationmethods,suchasdatafittingbasedonuniaxialandbiaxialtensiletests,moreaccuratemodelparameterscanbeobtained,whichcanaccuratelydescribethemechanicalbehaviorofrubbermaterialsinfiniteelementanalysis.Yeoh模型作為一種高階非線性模型,對(duì)于描述橡膠材料在大變形范圍內(nèi)的力學(xué)行為具有更高的精度。雖然模型參數(shù)的確定相對(duì)復(fù)雜,但通過多軸試驗(yàn)數(shù)據(jù)擬合等方法,也可以得到較為準(zhǔn)確的模型參數(shù)。在有限元分析中,Yeoh模型可以更好地捕捉橡膠材料在大變形范圍內(nèi)的非線性特性。TheYeohmodel,asahigh-ordernonlinearmodel,hashigheraccuracyindescribingthemechanicalbehaviorofrubbermaterialsoveralargedeformationrange.Althoughthedeterminationofmodelparametersisrelativelycomplex,moreaccuratemodelparameterscanalsobeobtainedthroughmethodssuchasmultiaxisexperimentaldatafitting.Infiniteelementanalysis,theYeohmodelcanbettercapturethenonlinearcharacteristicsofrubbermaterialsoveralargedeformationrange.展望未來,我們認(rèn)為在以下幾個(gè)方面可以對(duì)橡膠材料的有限元分析進(jìn)行深入研究:Lookingahead,webelievethatin-depthresearchcanbeconductedonfiniteelementanalysisofrubbermaterialsinthefollowingareas:模型優(yōu)化:進(jìn)一步研究和開發(fā)更精確的橡膠材料本構(gòu)模型,以更好地描述橡膠材料在不同加載條件下的力學(xué)行為。Modeloptim

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論