2023-2024學(xué)年廣東省深圳市福田區(qū)高一年級(jí)下冊(cè)期中數(shù)學(xué)模擬試題_第1頁(yè)
2023-2024學(xué)年廣東省深圳市福田區(qū)高一年級(jí)下冊(cè)期中數(shù)學(xué)模擬試題_第2頁(yè)
2023-2024學(xué)年廣東省深圳市福田區(qū)高一年級(jí)下冊(cè)期中數(shù)學(xué)模擬試題_第3頁(yè)
2023-2024學(xué)年廣東省深圳市福田區(qū)高一年級(jí)下冊(cè)期中數(shù)學(xué)模擬試題_第4頁(yè)
2023-2024學(xué)年廣東省深圳市福田區(qū)高一年級(jí)下冊(cè)期中數(shù)學(xué)模擬試題_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年廣東省深圳市福田區(qū)高一下冊(cè)期中數(shù)學(xué)模擬試題

一、單選題

1.已知復(fù)數(shù)Z=當(dāng),i為虛數(shù)單位,則IZI=()

1—1

A.2√2B.2√3C.2√5D.2√6

【正確答案】C

【分析】利用復(fù)數(shù)除法運(yùn)算求得z,然后求得∣z∣.

+=(2+6i(1+i)=(1+3i)(1+i)=2+4i,

【詳解】z=nnn+i?2~

UT以ι+ι)2

∣z∣=√4+16=2√5.

故選:C

2.已知集合A={x∈Z∣χ2-x-2≤θ},集合B=卜卜=Jl-IOg2X卜則AB=()

A.[-1,2]B.(1,2]C.{1,2}D.{-1,1,2}

【正確答案】C

【分析】根據(jù)題意,先將集合AB化簡(jiǎn),然后根據(jù)交集的運(yùn)算即可得到結(jié)果.

【詳解】因?yàn)锳={xeZ,-x-2≤θ}={xeZ∣-l≤x≤2}={-l,O,l,2}

B=卜卜,=JI-Iog2X卜則I-Iog爐20且χ>0,則可得8={x∣0<x≤2}

所以AB={1,2}

故選:C

3.下列函數(shù)中,既是奇函數(shù)又在(0,+8)上單調(diào)遞增的是()

A.y=ex+e~xB.y=ln(∣x∣+1)

sinX1

c?產(chǎn)可D?y=L1

【正確答案】D

【分析】利用函數(shù)奇偶性的定義判斷奇偶性,利用函數(shù)的解析式判斷單調(diào)性即可.

【詳解】Aj(T)=eτ+e'=e'+eτ=∕(x),是偶函數(shù),故錯(cuò)誤;

B.∕(-x)=ln∣-Λ∣+l=ln∣x∣+l=∕(x),是偶函數(shù),故錯(cuò)誤;

Cj(T)=羋P=書?=-"X)是奇函數(shù),但在(0,+s)上不是單調(diào)遞增函數(shù),故錯(cuò)誤;

Γx??x?

Dj(-x)=r+』=/x+」=-f(x)是奇函數(shù),且y=x和y=-L在(0,+s)上均為增函數(shù),故》

X?XJX

=X—?■在(0,+8)上為增函數(shù),故正確.

X

故選:D

本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

4334

A.——B.—C.一D.-

3443

【正確答案】A

【分析】利用公式變形化弦為切求出sin2α,cos2α,代入求值.

【詳解】因?yàn)閠anl=-7,

.2sinacosa2tana74

所以§血2。=2§血]?0§。=——;------;—_2_

Siira+cos~atan26z+l^49+l^^^25

C-).?>cos2ar-sin2a1-tan2a_1-49_24

cos2a=cos^<2-sιn^a--------------;—=-----,

cos-a+sin^^al+tan2a1+49-25

_24

..cos2a4

∣?----------=一?=——.

l+sin2a173

25

故選:A

5.已知“、6為兩條不同的直線,a、〃為兩個(gè)不同的平面,則下列說(shuō)法正確的是()

A.若a1/b,bua,則“〃α

B.若aua,baβ,allb,則a〃£

C.若a///?,aua,則a〃£

D.若a"β,aua,buβ,則a〃A

【正確答案】C

【分析】根據(jù)直線與平面,平面與平面的位置關(guān)系,對(duì)四個(gè)選項(xiàng)逐一判斷即可.

【詳解】對(duì)于A:若a∕∕A,bua,則//a或aua,故A錯(cuò)誤;

對(duì)于B:若aua,buβ,“//"則a〃£或a與4相交,故B錯(cuò)誤;

對(duì)于C:若a"β,αuα,則〃///,故C正確;

對(duì)于D:若a"β,αuα,bu/3,則α∕∕Z?或。與/?異面,故D錯(cuò)誤.

故選:C.

6.已知非零向量α,b滿足(α+2b)J.(α-26),且向量2在向量d方向的投影向量是,則向量d與

4

h的夾角是()

A.tB.?C,?D.生

6323

【正確答案】B

【分析】由垂直關(guān)系得出回=2忖,由向量〃在向量d方向的投影向量得出Aeos(ɑ/)=:,由兩式

得出CoS(a,b)=g,進(jìn)而得出夾角.

【詳解】因?yàn)?α+2b)JL(d-2?),所以(α+26)?(α-2?>)=同'-4忖一=0,即同=2W①.

因?yàn)橄蛄糠皆谙蛄喀练较虻耐队跋蛄渴遣罚訵CoS《力>向=+.

所以匕cos,,》=;②,將①代入②得,CoS(4,6>=g,又,㈤《。,藥,

所以(α,B)=g.

故選:B

7.已知正方形4BCf>的邊長(zhǎng)為2,尸為正方形ABCo內(nèi)部(不含邊界)的動(dòng)點(diǎn),且滿足尸4PB=O,

則CROP的取值范圍是()

A.(0,8]B.[0,8)C.(0,4]D.[0,4)

【正確答案】D

【分析】通過(guò)建立合適的直角坐標(biāo)系,設(shè)P(X,y),得到P的軌跡方程,最后得到CPOP的表達(dá)式,

根據(jù)函數(shù)單調(diào)性即可得到其范圍.

【詳解】以AB中點(diǎn)為原點(diǎn)建立如下直角坐標(biāo)系;

yl

?c

..中,

ABx

則A(T,0),6(1,0),C(l,2),O(T2),

設(shè)P(x,y),則PA=(-l-x,-y),PB=(l-x,-y),

則PA?P3=-(l-χ2)+y2=o,

即V+y2=],則%2_]=_丫2,其中TVX<1,O<y≤l,

貝IJCP=(XTy-2),0P=(X+l,y-2),O<y≤l

則CpZ)P=x2_]+(y_2)2=_y2+(y_2)2=-4y+4e[0,4),

故選:D.

8.已知函數(shù)/(x)的定義域是R,函數(shù)/(x+l)的圖象的對(duì)稱中心是(TQ),若對(duì)任意的4,

?∈(0,+∞),且占≠z,都有受"“三"(」>0成立,/(1)=1,則不等式/(χ)-X>O的解集為

x?~x2

()

A.(-∞,-l)u(l,+∞)B.(-1,1)

C.(→3o,-l)<j(0,l)D.(-l,θ)u(l,-κo)

【正確答案】D

【分析】利用函數(shù)/(x+l)的圖象的對(duì)稱中心是(T,0)可得/(X)是R上的奇函數(shù),由

rf(χ}-xf(x)fιχ?

"可得ΛI(xiàn)x2n,故可得g(x)=叢又在(。,+8)上單調(diào)遞增,然后分

%-Xy>UX

X1-X2

x=0,x>0和XVo三種情況進(jìn)行求范圍即可

【詳解】因?yàn)?(χ+l)是“X)向左平移1個(gè)單位長(zhǎng)度得到,且函數(shù)/(X+1)的圖象的對(duì)稱中心是(T,0),

所以“X)的圖象的對(duì)稱中心是(0,0),故〃X)是R上的奇函數(shù),所以〃-1)=—”1)=—1,

對(duì)任意的七,?∈(o,+∞),且X產(chǎn)X2,都有XJa);")>0成立,

X\~X2

/(x,)/(X,)

所以當(dāng)〃士)7"(占)=石馬>0,

xx

xlx2(?~ι).^1-X2

令g(Λ-)=/⑷,所以根據(jù)單調(diào)性的定義可得g(x)在(0,+∞)上單調(diào)遞增,

X

由“X)是R上的奇函數(shù)可得g(χ)是(y,0)U(0,一)上的偶函數(shù)

所以g(χ)在(-∞,O)上單調(diào)遞減,

當(dāng)X=O時(shí),不等式/(X)—X>O得到0—0>0,矛盾;

當(dāng)x>0時(shí),/(x)-x>O轉(zhuǎn)化成/區(qū)>1=2≡即g(x)>g⑴,所以χ>l;

X1

當(dāng)x<0時(shí),/(“一工>0轉(zhuǎn)化成上<1=^1,g(x)<g(-1),所以T<x<0,

X-1

綜上所述,不等式/(χ)-χ>o的解集為(T,0)7(l,4W)

故選:D

二、多選題

9.已知∣°gl”<∣°gl',則下列不等式一定成立的是()

22

C.ln(α-?)>OD.y-h>1

【正確答案】BD

【分析】由對(duì)數(shù)函數(shù)的性質(zhì)得a>b>0,再結(jié)合不等式性質(zhì)、指對(duì)數(shù)函數(shù)的性質(zhì)判斷各項(xiàng)的正誤.

【詳解】由題設(shè)a>6>0,則?k<J,A錯(cuò)誤;3"?>3°=1,D正確;

ab

由(J)<(J)<(g)'B正確;由于°—b與1的大小未知,C錯(cuò)誤;

故選:BD

10.已知函數(shù)/(x)=SinlX+t)cosx+cos(龍+《}inx,則下列結(jié)論正確的是()

A./(x)=sin∣2x+?^I

B.X培是?"x)圖象的一條對(duì)稱軸

C./O)的最小正周期為兀

D.將/(X)的圖象向左平移2個(gè)單位后,得到的圖象關(guān)于y軸對(duì)稱

O

【正確答案】ACD

【分析】對(duì)選項(xiàng)A,根據(jù)兩角和公式得到/(x)=sin(2x+£),即可判斷A正確,對(duì)選項(xiàng)B,根據(jù)

1≠±1,即可判斷B錯(cuò)誤,對(duì)選項(xiàng)C,根據(jù)周期公式即可判斷C正確,對(duì)選項(xiàng)D,根據(jù)三

角函數(shù)平移公式和函數(shù)的奇偶性即可判斷D正確.

【詳解】對(duì)選項(xiàng)A,

f(X)=Sin(X+《卜OSJr+cos(x+仁卜ar=Sin[X+x+?^?)=sin(2x+^),

故A正確:

/'f-^-‰sinf2×-?+->l=sin-=—≠±1,故B錯(cuò)誤;

(⑵I126)32

2TT

對(duì)選項(xiàng)C,T=-=π,C正確;

將/(X)的圖象向左平移,個(gè)單位后得g(x)=sin∣^2(γ)+弓=sin0x+?∣)=CoS2x,

定義域?yàn)镽,8(-?)=cos(-2x)=cos2x=g(x),

所以g(x)為偶函數(shù),圖象關(guān)于,軸對(duì)稱,D正確.

故選:ACD

11.在.A6C中,角A、B、C所對(duì)的邊分別為。、b、c,且4$1116005。+45汨。(:053=癡0/4,且4=5,

則下列說(shuō)法正確的是()

A.一ABC的外接圓的半徑為逑

3

B.若.43C只有一個(gè)解,則h的取值范圍為OV人<4或6=辿

3

C.若NB為銳角,則C的取值范圍為

D..4?C面積的最大值為46

【正確答案】AD

【分析】首先利用三角恒等變換求α=4,再根據(jù)正弦定理判斷A;

根據(jù)三角形的個(gè)數(shù),建立不等式,判斷B;

求角C的范圍,利用正弦定理求c,并求C的取值范圍,判斷C;

利用余弦定理,結(jié)合基本不等式求兒的最大值,即可判斷D.

【詳解】因?yàn)?si∏βcosC+4sinCcosB=asinA,

所以4sin(B+C)=4sinA=αsinA,SinAR0,

所以4=4,

a4

因?yàn)锳=q,所以SinA百,解得:R=Wg,故A正確;

2

B.若一ABC只有一個(gè)解,則從inA=0或α≥b>0,

得b=∣石或()<6≤4,故B錯(cuò)誤;

C.因?yàn)榻荁為銳角,Bw(θ,?∣),所以C=萬(wàn)一A-B=g-8,

/-、asinC4sinC8._

(π2π]c=--------=——7=^=-=rsιnC

所以C∈[%,}~J,sinA?/??j/?,

所以ce(gG,∣G,故C錯(cuò)誤;

22222

D.a=b+c-2bccosA=b+c-bc=16≥bc,當(dāng)b=c時(shí),等號(hào)成立,

所以=-hcsnA=he<

S4Λ?AΛZR>C2?44?,∕3,

所以.48C面積的最大值為46,故D正確.

故選:AD

12.已知正方體ABCO-A4GR的棱長(zhǎng)為2(如圖所示),點(diǎn)M為線段CG(含端點(diǎn))上的動(dòng)點(diǎn),由

點(diǎn)A,Dt,M確定的平面為ɑ,則下列說(shuō)法正確的是()

A.平面α截正方體的截面始終為四邊形

B.點(diǎn)M運(yùn)動(dòng)過(guò)程中,三棱錐A-ARM的體積為定值

C.平面α截正方體的截面面積的最大值為4及

^41

D.三棱錐A-4。M的外接球表面積的取值范圍為γπ,12π

【正確答案】BCD

【分析】根據(jù)線面平行的判定定理,運(yùn)動(dòng)變化思想,函數(shù)思想,即可分別求解.

【詳解】對(duì)A選項(xiàng),當(dāng)M與C點(diǎn)重合時(shí),平面ɑ截正方體的截面為.ARC,錯(cuò)誤;

對(duì)B選項(xiàng),?.?CC∣∕∕OR,又CG(Z平面AADI,OAU平面A∣AR,

.?.CG,平面A∣AR,又點(diǎn)"為線段CG(含端點(diǎn))上的動(dòng)點(diǎn),

??.M到平面AAR的距離為定值,又YAR的面積也為定值,

.?.三棱錐A-ARM的體積為定值,正確;

對(duì)C選項(xiàng),當(dāng)M由C移動(dòng)到C1的過(guò)程中,利用平面的基本性質(zhì),延長(zhǎng)AM交OC于G,連接AG交BC

于K,

所以,從C到G之間,平面α截正方體的截面為AKMR為等腰梯形,且KM//AR,

當(dāng)M與G重合時(shí),截面為矩形ABGA,此時(shí)面積最大為4應(yīng),正確;

3G

對(duì)D選項(xiàng),如圖,分別取左右側(cè)面的中心E,F,則EF垂直于左右側(cè)面,

根據(jù)對(duì)稱性易知:三棱錐A-A。M的外接球的球心。在線段EF上,

設(shè)M到尸的距離為X,則

設(shè)。尸=/,則OE=2T,又易知ED?=G.,外接球。的半徑R=OR=OM,

在RtAREO與Rt尸O中,由勾股定理可得::+(2T)=R-,兩式相減得:/=生/,

t+X=/?24

+X2,令機(jī)=丁,Xx∈[∣,√2],P∣lj∕n∈[l,2],

/、2,

.八2?6—m\tn~÷4m+36r?i

..R-=1-^—1+m=-------?--------,Wie[11,2],

設(shè)函數(shù)/(〃?)=史士史上史,[∣,2],則/(,〃)的對(duì)稱軸為機(jī)=-2,的開口向上,

16

"⑻在[1,2]上單調(diào)遞增,最小值為/⑴=3最大值為〃2)=3,即

Io[_1。_

.?.三棱錐A-AD陽(yáng)的外接球表面積S=4兀Κ屋^π,12π,正確.

故選:BCD.

三、填空題

13.已知函數(shù)/(x)=SinX+2x+m在區(qū)間恒)上有零點(diǎn),則實(shí)數(shù)〃?的取值范圍是

【正確答案】(-1—n,0)

【分析】先利用基本初等函數(shù)的單調(diào)性判斷得了(χ)在(og)上都單調(diào)遞增,再利用零點(diǎn)存在定理得到

/(0)<0

>0,解之即可得解?

【詳解】因?yàn)閥=sinx與y=2x+根在[o,費(fèi)上都單調(diào)遞增,

Ro,熱上單調(diào)遞增,

因?yàn)?(x)=SinX+2x+zn在區(qū)間嗚上有零點(diǎn),

Sino+2x0+加<0

/(o)<om<0

所以,ππ八,即

佃mHsin—+2×-÷∕∏>01+π+加>0'

22

解得一1一兀<m<0,

所以實(shí)數(shù)777的取值范圍為(-1-兀,0).

故答案為.(—1-兀,0)

14.如圖,一是用斜二測(cè)畫法得到的AAOB的直觀圖,其中。A=2,OE=3,則AB的長(zhǎng)度為

【正確答案】2回

【分析】把直觀圖還原為原平面圖形,根據(jù)直觀圖畫法規(guī)則,利用勾股定理求出AB的長(zhǎng)度即可.

【詳解】把直觀圖VA'0'8'還原為,AOB,如圖所示:

根據(jù)直觀圖畫法規(guī)則知A=O4'=2,03=203'=2x3=6,

所以AB的長(zhǎng)度為AB=JoA2+OB2=√4+36=2√10.

故答案為.2√I6

15.一ABC中,角A、B、C所對(duì)的邊分別為。、b、C若(為一C)COS3=6COSC,JΞL?=√3,W∣JABC

周長(zhǎng)的最大值為.

【正確答案】3√3

【分析】利用正弦定理結(jié)合兩角和的正弦公式可求得CosB的值,結(jié)合角B的取值范圍可求得角8的

值,利用余弦定理結(jié)合基本不等式可求得α+c的最大值,即可得出一ABC周長(zhǎng)的最大值.

【詳解】因?yàn)?2。-C)COS3COSC,由正弦定理可得(2SinA-Sine)CoS5=sinBcosC,

所以,2sinAcos8=sin3CoSC+cosBsinC=sin(5+C)=sinA,

因?yàn)锳、B∈(0,π),貝IJSinA>0,所以,CoSJB=g,故呂=],

由余弦定理可得3=b2=a2+c2-24ccosB=a2+c2-cιc=(a+c)2-3ac

“a+"一3("c)心支,

v,、

44

所以,(4+c)2≤12,BPα+c≤2√3,故α+h+c≤3√L

當(dāng)且僅當(dāng)α=c=百時(shí),等號(hào)成立,故一ABe周長(zhǎng)的最大值為3百.

故答案為.36

16.函數(shù)int(x)是計(jì)算機(jī)程序中一個(gè)重要函數(shù),它表示不超過(guò)X的最大整數(shù),例如

int(-3.9)=Y,int(24)=2,已知函數(shù)/(x)=Jbg〈。團(tuán)〉。,且“≠l),若〃x)的圖像上恰

有3對(duì)點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)。的最小值為.

【正確答案】∣∕0.2

【分析】根據(jù)題意,畫出函數(shù)f(x)的圖像,轉(zhuǎn)化為兩函數(shù)圖像有3個(gè)交點(diǎn),數(shù)形結(jié)合,列出不等式,

即可求得結(jié)果.

/、fx-int(x),x>O,

【詳解】根據(jù)題意,作出函數(shù)〃X)=IzV<八(。>°,且α≠l),的圖像,如圖所示,

logu(-x),x<0

要使/(x)的圖像上恰有3對(duì)點(diǎn)關(guān)于原點(diǎn)對(duì)稱,

則函數(shù)y=T°g"X=logIX與V=X-int(x),(x>0)的圖像恰有3個(gè)交點(diǎn),

a

O<a<?

則log,4<l,解得太

a

Iog15≥1

a

所以實(shí)數(shù)“的最小值為千,

故答案為:

方法點(diǎn)睛:解答此題要根據(jù)函數(shù)解析式的特征作出圖象,采用數(shù)形結(jié)合的方法,將原問(wèn)題轉(zhuǎn)化為函數(shù)

圖象的交點(diǎn)個(gè)數(shù)問(wèn)題,即可解決.

四、解答題

17.已知函數(shù)F(X)=tan,-2).

⑴求尼)的值;

⑵設(shè)a4兀毛),若/6-不)=2,求sin(a+:)和tan2α.

【正確答案】(I)I

,??.(兀]3√10,?_4

(2)sincc4—I=---------,tfan2a——

[4)103

【分析】(I)根據(jù)解析式直接求出答案;

(2)由條件可得tan0=2,然后求出Sina,cosα的值,然后根據(jù)和差公式和倍角公式可得答案.

【詳解】(1)因?yàn)榻鈞)=tan(3x-:}所以/(力=tan(g-:)=ta吟=1;

(2)因?yàn)?(]_:)=tan(a_7t)=tana=2,

所以Sina=2cosα,

13?sin2cr+cos2a=?ya€卜費(fèi)),所以可解得Sina=CoSa=~~~,

α+c°Sa)=旦3√5λ3√10

72^V

2tana44

tan2a---=—

l-tan2a1-43

2一

18.如圖,在ABC中,Ao=WAB,點(diǎn)E為AC中點(diǎn),點(diǎn)尸為BC上的三等分點(diǎn),且靠近點(diǎn)。,設(shè)CA=

CB=b.

(1)用α,b表:示CD,EF;

(2)如果AC=2,且C。求BC.

3211

【正確答案】⑴。=丁+丁,EF=-b--a

(2)3

【分析】(1)結(jié)合圖形,結(jié)合向量加,減,和數(shù)乘,即可用基本表示向量;

(2)根據(jù)(1)的結(jié)果,利用CDEF=O,即可求解.

2

【詳解】(1)因?yàn)?。=WA8,

CD=CA+AO=CA+-AB=CA+—(C6-CA)=」CA+—C6=,+—b

55、75555

EF=CF-CE=-CB--CA=-b--a↑

3232

(2)因?yàn)镃DLEF,所以8.所=(|"河(>-;4=0,

所以小L得/=0,由忖=2,可得W=3,

所以BC的長(zhǎng)為3.

19.如圖,在JIBC中,AC=4√2.C=工,點(diǎn)。在邊BC上,cosZADB=^-.

63

⑴求40的長(zhǎng);

(2)若AA5E)的面積為2√∑,求AB的長(zhǎng).

【正確答案】(I)AD=3

(2)AB=3

【分析】(1)根據(jù)三角形中鄰補(bǔ)角互補(bǔ),COSZADB=P由平方關(guān)系得SinZAoC,再結(jié)合正弦定理

即可求得AQ的長(zhǎng);

(2)由AABO得面積可得sinZΛOC=SinNAQB=2也,再結(jié)合余弦定理即可求得AB的長(zhǎng).

3

【詳解】(1)因?yàn)镹A£)3+NADC=Tt,所以CoSZAZ)C=-CoSNADB=-;

在44£>C中,因?yàn)镹AZ)CG(O,π)

所以sinZADC=Jl-COSZQC=??

?nAC

在AABO中,由正弦定理得,——

SinCsinZADC

4√2×'

AC-sinC_____2__o

所以A。=2√2T

sinZADC

(2)AABD的面積為2&,W?05?OAsinZADB=2√2

因?yàn)閆ADB+ZADC=π,所以SinZADC=sinZ.ADB=

3

又因?yàn)锳D=3,所以84=2

在ZVlBO中,由余弦定理得AB?=rvV+oB2—2ZM?O8?cosNAOB=32+22-2x3x2xg=9

所以AB=3.

20.如圖,在三棱錐尸-ABC中,TlBC是正三角形,PAL平面ABC,RE,F分別為尸AP3,PCk

的點(diǎn),且普=2=嚕=:.已知AB=6,AP=9.

/LJ/C-/?z?

(1)設(shè)平面DEFc平面ABC=/,證明:/「平面PBC;

(2)求五面體。底尸-ABC的體積.

【正確答案】(1)見解析:

(2)25>A?

【分析】(1)首先證明EFHBC,則有EFU平面ABC,再根據(jù)線面平行的性質(zhì)定理得到EFHl,貝IJ得

到線面平行;

(2)根據(jù)相似得S

【詳解】3)因?yàn)槎?正,所以E尸〃BC,

因?yàn)锽CU平面ABC,EF?t平面ABC,

所以EF〃平面ABC,

又平面Z)EFC平面ABC=l,EFu平面DEF,所以EFHl,

又MU平面PBClB平面PBC,所以W平面PBC,

ppPFAD11

(2)因?yàn)椤?北=嗯="所以S/"=*SPBC

1LJ/c∕?rjy

222

vvV

所以VD-PEF=?A-PEF=萬(wàn)A-PBC=~P-ABC

25

所以五面體DEF—ABC的體積VZ=VP_ABC~VD-PEF=王jVp-ABC

因?yàn)樨?=3362*爭(zhēng)9=27百,所以丫=25百

21.如圖,在平面四邊形ABCD中,AB=2,BC=6,Ar)=CD=4.

(1)當(dāng)四邊形ABC。內(nèi)接于圓。時(shí),求角C;

(2)當(dāng)四邊形ABC。的面積最大時(shí),求對(duì)角線3。的長(zhǎng).

【正確答案】(I)C=W

(2)BD=2√7

【分析】(1)根據(jù)A+C=π,結(jié)合余弦定理求解即可;

_—SinA+3sinCc,2

(2)結(jié)合余弦定理和面積公式得4一'',進(jìn)而得±-=6-6CoS(A+C),再根據(jù)三角函數(shù)

2=3cosC-cosA16

性質(zhì)得A+C=兀時(shí),S有最大值,結(jié)合余弦定理求解即可.

【詳解】(1)解:連接30,由余弦定理可得:

BD2=AB2+AD2-2AB?AD?cosA=2?+4?-2X2X4XcosA,

BD2=BC2+CD2-2BCCDCOSC=42+62-2×4×6×COSC,

所以20-16COSA=52-48CoSC.

又四邊形ABCZ)內(nèi)接于圓0,

所以A+C=π,

所以20-16cos(π-C)=52-48cosC,

化簡(jiǎn)可得CoSC=;,又Ce(0,τr),

JT

所以C=].

(2)解:設(shè)四邊形ABa)的面積為S,

則S=S2加+SRm=LA8-A£bsinA+L8C-C£)-sinC,

八YZλAθi√ZAioLZ√22'

又=AB?+AD2-2A5?AO?cosA=BC2+CL>2-28C?8?COSC,

11IrS

~S=—×2×4sinA÷-×4×6sinC—=sinΛ+3sinC

所以J22,即J4,

22+4^-2×2×4cosA=42+62-2×4×6cosC[2=3CoSC-Ce)SA

C2C2

平方后相力口得出+4=10+6SinAsinC-6cosAcosC,即—=6-6cos(A+C),

又A+Ce(0,2π),

Q2

所以A+C=π時(shí),二有最大值,即S有最大值.

16

此時(shí),A=π-C,代入2=3COSC-COSA得CoSC=-.

2

又Ce(0,兀),所以C=;.

在ABCD中,可得:

BD-=BC2+CD2-2BC?CD?COSC=42+62-2×4×6×COS?≡=28,B∣JBD=2√7.

所以,對(duì)角線80的長(zhǎng)為2√7.

22.已知函數(shù)/(x)=ln(e2*+l)+丘是偶函數(shù).

⑴求實(shí)數(shù)女的值;

⑵當(dāng)x≤0時(shí),函數(shù)g(x)=∕(x)-x-。存在零點(diǎn),求實(shí)數(shù)。的取值范圍;

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論