數(shù)學必修四五-綜合測試卷_第1頁
數(shù)學必修四五-綜合測試卷_第2頁
數(shù)學必修四五-綜合測試卷_第3頁
數(shù)學必修四五-綜合測試卷_第4頁
數(shù)學必修四五-綜合測試卷_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2015-2016學年度依蘭縣高級中學4月測試卷考試范圍:必修4、5;考試時間:120分鐘;命題人:依蘭縣高級中學劉朝亮1、假設(shè)為鈍角,那么的終邊在〔〕A.第一象限B.第二象限C.第三象限D(zhuǎn).第一象限或第三象限2、在中,,,,那么等于〔〕A.B.C.D.3、在中,三邊為,假設(shè)成等差數(shù)列,那么所對的角是〔〕A.銳角 B.直角 C.鈍角 D.不能確定4、設(shè),那么與的大小關(guān)系是()A.B.C.D.5、角的終邊上一點,且=,那么=〔〕A.B.C.D.6、函數(shù)的圖象可看成是把函數(shù)的圖象做以下平移得到〔〕A.向右平移B.向左平移C.向右平移D.向左平移7、函數(shù)f(x)=sin,x∈R是()A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)C.最小正周期為的奇函數(shù)D.最小正周期為的偶函數(shù)8、函數(shù)與函數(shù)的圖像所有交點的橫坐標之和為()A.2 B.4 C.6 D.89、設(shè)點P是函數(shù)的圖象C的一個對稱中心,假設(shè)點P到圖象C的對稱軸上的距離的最小值,那么的最小正周期是〔〕A.2πB.πC.D.10、角α的終邊過點P(-3,4),那么cosα=〔〕A.B.C.D.11、600o的值是() A. B. C. D.12、的值是()A.B.C.D.13、平面向量,,且//,那么=.14、在△ABC中,a=5,b=7,∠B=60°,那么c=________.15、函數(shù)的局部圖象如下圖,設(shè)是圖象的最高點,是圖象與軸的交點,那么.16、向量a,b,向量c滿足〔cb〕a,〔ca〕//b,那么c17、函數(shù).〔Ⅰ〕求函數(shù)的最小正周期;〔Ⅱ〕求函數(shù)的單調(diào)遞增區(qū)間.18、中,為邊上的一點,,,,求.19、cos=-,求cos(),20、函數(shù).〔1〕求函數(shù)的值域;〔2〕假設(shè)是函數(shù)的圖像的一條對稱軸且,求的單調(diào)遞增區(qū)間.21、在數(shù)列中,,,且〔〕.(1)設(shè)〔〕,證明是等比數(shù)列;(2)求數(shù)列的通項公式;(3)假設(shè)是與的等差中項,求的值,并證明:對任意的,是與的等差中項.22、數(shù)列滿足:,,,.〔1〕假設(shè),且數(shù)列為等比數(shù)列,求的值;〔2〕假設(shè),且為數(shù)列的最小項,求的取值范圍.參考答案一、單項選擇1、【答案】A【解析】2、【答案】C【解析】3、【答案】A【解析】即,∴,∴,由,,且等號不能同時取得知,選A.4、【答案】C【解析】5、【答案】B.【解析】由余弦函數(shù)的定義知,,解之得,,又,所以,故應選B.6、【答案】B【解析】∵,∴將函數(shù)的圖像向左平移個單位即可得到的函數(shù)圖像.7、【答案】B【解析】8、【答案】B【解析】將兩個函數(shù)同時向左平移1個單位,得到函數(shù),,那么此時兩個新函數(shù)均為偶函數(shù).在同一坐標系下分別作出函數(shù)和的圖象如圖,由偶函數(shù)的性質(zhì)可知,四個交點關(guān)于原點對稱,所以此時所有交點的橫坐標之和為0,所以函數(shù)與函數(shù)的圖像所有交點的橫坐標之和為4,選B.9、【答案】B【解析】設(shè)點P是函數(shù)的圖象C的一個對稱中心,假設(shè)點P到圖象C的對稱軸上的距離的最小值,∴最小正周期為π,選B.10、【答案】A【解析】11、【答案】C【解析】根據(jù)題意,由于600o=sin〔360o+240o〕=sin=-sin=,應選C.12、【答案】C【解析】二、填空題13、【答案】【解析】由//可知m=-4,,那么=.14、【答案】815、【答案】-2【解析】16、【答案】【解析】三、解答題17、【答案】【解析】18、【答案】由cos∠ADC=>0,知B<.由得cosB=,sin∠ADC=.從而sin∠BAD=sin〔∠ADC-B〕=sin∠ADCcosB-cos∠ADCsinB==.由正弦定理得,所以=.【解析】三角函數(shù)與解三角形的綜合性問題,是近幾年高考的熱點,在高考試題中頻繁出現(xiàn).這類題型難度比擬低,一般出現(xiàn)在17或18題,屬于送分題,估計以后這類題型仍會保存,不會有太大改變.解決此類問題,要根據(jù)條件,靈活運用正弦定理或余弦定理,求邊角或?qū)⑦吔腔セ?19、【答案】,,那么,,【解析】20、【答案】〔1〕;〔2〕[,]〔〕.試題分析:〔1〕利用三角恒等變換對原函數(shù)進行化簡,可將原函數(shù)化簡為的形式,再由三函數(shù)值域求得的值域;〔2〕因為的對稱軸為,所以可列等式=,,可求得的值,從而得到函數(shù)的解析式,求三角函數(shù)的單調(diào)遞增區(qū)間,即可求得函數(shù)的遞增區(qū)間.試題解析:〔1〕==∴的值域為[-3,1]〔2〕由題意得=()∴∵∴,那么由()得的增區(qū)間為[,]〔〕考點:三角函數(shù)恒等變換,函數(shù)的單調(diào)性及其值域.【解析】21、【答案】〔2〕時,【解析】〔1〕證明:由題設(shè)〔〕,得,即,.又,,所以是首項為1,公比為的等比數(shù)列.〔2〕解法:由〔1〕,,……,〔〕.將以上各式相加,得〔〕.所以當時,上式對顯然成立.〔3〕解:由〔2〕,當時,顯然不是與的等差中項,故.由可得,由得,①整理得,解得或〔舍去〕.于是.另一方面,,.由①可得,.所以對任意的,是與的等差中項.22、【答案】〔1〕或.〔2〕試題分析:〔1〕,而數(shù)列為等比數(shù)列,那么可由求出或.再分別驗證當時,符合題意;當時,,利用累加法得符合題意.〔2〕,,利用累加法得,由題意轉(zhuǎn)化為恒成立問題:對,有恒成立,即對恒成立.變量別離時需分類討論:當時,,恒成立,當時,,恒成立,當時,有,分析數(shù)列得為遞增數(shù)列,因此當時,,當時,數(shù)列得為遞增數(shù)列,因此當時,試題解析:〔1〕,,∴,,由數(shù)列為等比數(shù)列,得,解得或.當時,,∴符合題意;當時,,∴=,∴符合題意.〔2〕法一:假設(shè),,∴==.∵數(shù)列的最小項為,∴對,有恒成立,即對恒成立.當時,有,∴;當時,有,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論