2023-2024學(xué)年上海市松江區(qū)高二年級(jí)上冊期末考試數(shù)學(xué)試題(含答案)_第1頁
2023-2024學(xué)年上海市松江區(qū)高二年級(jí)上冊期末考試數(shù)學(xué)試題(含答案)_第2頁
2023-2024學(xué)年上海市松江區(qū)高二年級(jí)上冊期末考試數(shù)學(xué)試題(含答案)_第3頁
2023-2024學(xué)年上海市松江區(qū)高二年級(jí)上冊期末考試數(shù)學(xué)試題(含答案)_第4頁
2023-2024學(xué)年上海市松江區(qū)高二年級(jí)上冊期末考試數(shù)學(xué)試題(含答案)_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年上海市松江區(qū)高二上冊期末考試數(shù)學(xué)試題

一、填空題

1.過點(diǎn)A(2,3),且法向量是〃=(4,3)的直線的點(diǎn)法向式方程是—.

【正確答案】4(x-2)+3(y-3)=O

【分析】利用直線的點(diǎn)法式方程寫出即可.

【詳解】根據(jù)直線的點(diǎn)法式方程可得直線的點(diǎn)法式方程.4(x-2)+3(y-3)=0

故4(x-2)+3(y-3)=0

2.用數(shù)學(xué)歸納法證明1,+±+...+」一<11(1£M,11>1)時(shí),第一步應(yīng)驗(yàn)證的不等式是—.

9=5∏-11

【正確答案】∣+?2

【詳解】由條件知n的第一個(gè)值為2,所以第一步應(yīng)驗(yàn)證的不等式是l+i+i<2.

7□

3.若數(shù)列{4}為等比數(shù)列,且4+%=l,a3+a4=2,則45+^6=.

【正確答案】128

【分析】設(shè)公比為4,由今詈=d,則%+46=(4+%),4代入求解即可.

【詳解】設(shè)公比為4,則相=?詈=2,所以/+%=(%+/W'=128.

故128

4.若直線/的斜率為左,傾斜角為α且αe[J,學(xué)1,則k的取值范圍是___.

44

【正確答案】(-∞,-l]u[l,+∞)

【分析】直接利用斜率和傾斜角的關(guān)系來得答案.

【詳解】.A=tanα,且αe[f,當(dāng),

44

rM≤-1或&≥:1,

即k的取值范圍是(y,-l]51,+e).

故答案為?(-8,T]<Λl,+8)

5.某籃球隊(duì)在本賽季已結(jié)束的8場比賽中,隊(duì)員甲得分統(tǒng)計(jì)的莖葉圖如下,則甲在比賽中

得分的方差為.

078

10579

213

1129

【正確答案】32.25##32-##——

44

【分析】先計(jì)算出甲比賽中得分的均值,再利用方差公式可求得結(jié)果.

【詳解】甲在比賽中得分的均值為[=:(7+8+10+15+17+19+21+23)=15,

8

方差為S?=(X[(-8)2+(-7)2+(-5)2+O2+22+42+62+82]=32.25.

故答案為.32.25

二、解答題

6.直線y-2=O與直線y=2x-l的夾角大小等于.(結(jié)果用反三角函數(shù)值表示).

【正確答案】arctan2

【分析】先分別求出兩條直線的斜率,再套用夾角公式即可求出答案.

【詳解】直線y-2=0與直線y=2x-l的斜率分別為0和2,設(shè)它們的夾角為內(nèi)

0-2

所以Iane=-~~――=2,則6=arctan2.

l+0×2

故答案為.arctan2

三、填空題

7.已知數(shù)列{q}的前”項(xiàng)和S,,=2"M-2.則數(shù)列{α,,}的通項(xiàng)公式為.

【正確答案】4=2"

[S,-Srt1,n≥2

【分析】根據(jù)公式為=;7求解即可.

【詳解】解:當(dāng)〃=1時(shí),a,=S,=22-2=2;

+,n+n

當(dāng)“≥2時(shí),an=Sπ-S42"-2-(2"-2)=2'-2=2".

因?yàn)?=2也適合此等式,所以4=2”.

故。=2"

8.已知圓錐的體積為由左,母線與底面所成角為g,則該圓錐的表面積為_____.

33

【正確答案】3萬

【分析】設(shè)圓錐底面半徑AO=OB=r,則母線長∕=S4=2r,高SO=百r,

則Vz?6r=2^4,求出r=l,I=SA=2,該圓錐的表面積為S=乃〃+萬戶,由此能

33

求出結(jié)果.

【詳解】解:圓錐的體積為祖乃,母線與底面所成角為g,

33

,如圖,設(shè)圓錐底面半徑AO=Q8=r,則母線長∕=%=2r,高So=后,

解得r=?7I=SA=2fSO=?/?,

該圓錐的表面積為S=πrl+πr2=2π+π=3關(guān).

本題考查圓錐的表面積的求法,考查圓錐的性質(zhì)、體積、表面積等基礎(chǔ)知識(shí),考查運(yùn)算求解

能力,是基礎(chǔ)題.

9.已知直線/過點(diǎn)P(Y,1),且與直線“:3x-y+l=0的夾角為arccos=叵,則直線/的方程

10

為.

【正確答案】4x-3y+19=0或X=Y.

【分析】先求tan(arccos嚕),再根據(jù)夾角公式求得直線/的斜率,利用點(diǎn)斜式即可求出直

線/的方程.

【詳解】設(shè)直線/的斜率為人,

因?yàn)閏os(arccos???θ)=???θ,且arccos???θ為銳角,

101010

所以sin(arccoscos2(arccos

所…浮吧F卜怎—T

cos(arccos?θ)

故過點(diǎn)尸(-4/),且與直線加:3x-y+l=O的夾角為arccos±何的直線/的方程

10

4

為y-l=§(x+4),即4x-3y+19=0.

當(dāng)直線/的斜率不存在時(shí),此時(shí)直線/的方程x=-4,符合題意.

所以直線/的方程為4x-3y+19=0或χ=-4.

故4》一3尸19=0或》=7

10.如圖所示,設(shè)正三角形Tl邊長為a,I用是刀,的中點(diǎn)三角形,A“為Z,除去看”后剩下三個(gè)

三角形內(nèi)切圓面積之和,求Iim(A+4+L+4)=_____.

“—>00

【分析】第一個(gè)中點(diǎn)三角形ABCl的邊長為對應(yīng)的內(nèi)切圓半徑r=gjga)20)2,從

而求得A,再根據(jù)相似的性質(zhì)可得。=;,依次類推,從而根據(jù)無窮小數(shù)列即可求解.

A24

【詳解】記第一個(gè)中點(diǎn)三角形為正三角形△A1B1C1,則^ABcl邊長為gα,

內(nèi)切圓半徑為r=*4心)2=殺a,

所以A=兀x(旦]x3=2空

1214416

因?yàn)椤鰽2BzG與△44C相似,并且相似比是與2,

則面積的比是1:4,所以A,=吧IX',

164

因?yàn)檎鰽3B3C3與正△的面積的比也是1:4,所以A=KXP■],

16⑷

2

πα<1?>>時(shí)

所以Iim(A+4++A”)=Iim」6(JJ=_L^_=.

7

n→<x>\Λ→ο>1112

1----1----

44

故答案為.空?

12

11.已知集合A={x∣x=2〃一l,"cN*},B=kk=2",weN*},將AuB中的所有元素按從

小到大的順序排列構(gòu)成一個(gè)數(shù)列{??},設(shè)數(shù)列{??}的前∏項(xiàng)和為Sn,則使得S11>IO(M)成立的

最小的〃的值為.

【正確答案】36

[分析】由題可得2"為數(shù)列{??}的2"τ+〃項(xiàng),且利用分組求和可得Sy1=4"~,+2n+,-2,

通過計(jì)算即得.

【詳解】由題意,對于數(shù)列{%}的項(xiàng)2",其前面的項(xiàng)1,3,5,2',-leA,共有2"∣項(xiàng),

2,22,23,???,2"∈B,共有〃項(xiàng),所以2"為數(shù)列{4}的2"-∣+〃項(xiàng),

n)'>|

且S?.%,=[(2xl-l)+(2x2-l)+…+QX2"T-1)]+(2+22++2")=4^'+2-2.

可算得產(chǎn)+6=38(項(xiàng)),&=64,S38=1150,

因?yàn)?=63,α?=61,a3s=59,所以S37=IO86,S36=1023,S35=962,

因此所求”的最小值為36.

故36.

12.已知遞增數(shù)列{qJ共有2017項(xiàng),且各項(xiàng)均不為零,為。"=1,如果從{??}中任取兩項(xiàng)4嗎,

當(dāng)i<∕時(shí),%-4?仍是數(shù)列{4}中的項(xiàng),則數(shù)列{4}的各項(xiàng)和$7=.

【正確答案】1009

【詳解】???當(dāng)i<∕時(shí),仍是數(shù)列{%}中的項(xiàng),而數(shù)列{q}是遞增數(shù)列,

al,-αn,1<an-a?_2<an-a?_3<<an-a,<al,,

所以必有ɑ,,-ɑ,?=α∣,an-an_2=a2all-al,利用累加法可得:

(〃-1)%=2(4+4+故S,,="區(qū),得S刈7=?魯=IOo9,

故答案為1009.

點(diǎn)睛:本題主要考查了數(shù)列的求和,解題的關(guān)鍵是單調(diào)性的利用以及累加法的運(yùn)用,有一定

難度;根據(jù)題中條件從也}中任取兩項(xiàng)4嗎,當(dāng)i<∕時(shí),區(qū)仍是數(shù)列{4}中的項(xiàng),結(jié)

合遞增數(shù)列必有4-α,τ=aI,a,,~a,,-2=a2a,,~aι=?-∣.利用累加法可得結(jié)果.

四、單選題

13.已知直線4:細(xì)+y+ι=o與直線4:&χ+yτ=o,那么“占=勺’是“"%”的()

A.充分而不必要條件B.必要而不充分條件

C.充分必要條件D.既不充分也不必要條件

【正確答案】C

【分析】利用充分條件和必要條件的定義判斷即可

【詳解】解:當(dāng)占=履時(shí),”4,而當(dāng)"4時(shí),k?=k[,

所以“占=k2”是““4”的充分必要條件,

故選:C

14.設(shè)A,8為兩個(gè)隨機(jī)事件,以下命題錯(cuò)誤的為()

A.若4B是獨(dú)立事件,P(A)=I尸(B)=I,則P(A可=J

B.若AB是對立事件,則P(AuB)=I

C.若AB是互斥事件,P(A)=∣,P(B)=L則尸(AB)=y

D.若p(司=g,P⑻=;,且P(M)=;,則A8是獨(dú)立事件

【正確答案】C

【分析】利用互斥公式、獨(dú)立公式、對立公式滿足的條件可以一一判斷.

【詳解】對于A:當(dāng)AB是獨(dú)立事件時(shí),A,5也是獨(dú)立事件,

ΛP(AB)=P(A)?P(B)=1×(1-1)=1A正確;

對于B:當(dāng)AB是對立事件時(shí),P(AB)=P(A)+P(B)=1,B正確;

對于C:當(dāng)AB是互斥事件,P(A)=!,P(B)=2,則P(Aβ)=P(A)+P(B)=→^=∣,C

32236

錯(cuò);

對于D:啊=j.?.P(B)=(,.?.P(孫P(B)=gx?=;=尸畫,故和B是獨(dú)立事件,

即A8是獨(dú)立事件,D正確.

故選:C

15.魏晉時(shí)期數(shù)學(xué)家劉徽在他的著作《九章算術(shù)注》中,稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)

切圓柱所圍成的幾何體為“牟合方蓋”,劉徽通過計(jì)算得知正方體的內(nèi)切球的體積與“牟合方

蓋”的體積之比應(yīng)為兀:4.若正方體的棱長為2,則“牟合方蓋”的體積為()

,-16128

A.16B.16√r3C.—D.----

33

【正確答案】C

【分析】由已知求出正方體內(nèi)切球的體積,再由已知體積比求得“牟合方蓋''的體積.

【詳解】正方體的棱長為2,則其內(nèi)切球的半徑r=l,

4,4

正方體的內(nèi)切球的體積V球=—π×Γ=彳兀,

.,V球π4416

又由已知F="?合方『『廣亍

故選C.

本題考查球的體積的求法,理解題意是關(guān)鍵,是基礎(chǔ)題.

16.己知點(diǎn)O(0,0)、A(2,3)和穌(5,6),記線段AA的中點(diǎn)為小取線段4出和勺綜中的

一條,記其端點(diǎn)為4、B?,使之滿足(IoA-5川。聞-5)<0,記線段A田的中點(diǎn)為g,取

線段AE和鳥Bl中的一條,記其端點(diǎn)為&、B2,使之滿足(IC閡-5.0因-5)<0,依次下

去,得到點(diǎn)<、P,、P3、L、P“、L,則!吧用=()

A.√2B.√5C.√3D.3

【正確答案】A

【分析】計(jì)算出線段4線上到原點(diǎn)距離等于5的點(diǎn)為尸的坐標(biāo),分析可知[、P2,L、P八

L的極限為P(3,4),利用極限的定義以及兩點(diǎn)間的距離公式計(jì)算可得結(jié)果.

【詳解】由(IoAI-5)(∣3∣-5)<0得和Q叫一個(gè)大于5一個(gè)小于5,

設(shè)線段4且上到原點(diǎn)距離等于5的點(diǎn)為P(X,y),

2Ξ2Ξ

由后丁=5且∣=J,得X=3,y=4,

n'x-2x-5

所以線段4穌上到原點(diǎn)距離等于5的點(diǎn)為P(3,4),

若(IoaI-5*0聞-5)<0,則A、鳥應(yīng)在點(diǎn)5(3,4)的兩側(cè),

所以第一次應(yīng)取4、與、4、B紇L中必有一點(diǎn)在P(3,4)的左側(cè),一點(diǎn)在P(3,4)的右側(cè),

因?yàn)椋肌ⅧB、L、P“、L是中點(diǎn),所以<、尸2、L、P,,、L的極限為*3,4),

所以Jirn∣AΛl=HH=7(2-3)2+3(3-4)2=√2.

故選:A.

五、解答題

17.已知直線∕∣:3x+γ+2=0,l1.mx+2y+n=0

(1)若4_L,2,求機(jī)的值;

(2)若I11/I2,且直線∕l與直線I2之間的距離為JiG,求4的方程.

2

【正確答案】(1)-:

(2)3x+y+12=0或3x+y-8=0.

【分析】(1)由兩直線垂直,可得斜率乘積為-1,列方程可得答案;

(2)由兩直線平行,斜率相等可求出m的值,再由兩平行線間的距離公式列方程可求出〃的

值,即可求出直線方程.

【詳解】⑴設(shè)直線/J的斜率分別為4,&,則K=-3-=~^?

若一,

.3m

則nK1X玄i=—=-1t,

2

2

/.m=——

3

(2)若“〃2,則一3=-£=〃2=6,

??/2可以化簡為3χ+y+]=0,

又直線《與直線4的距離=√io,

^√io

,〃=24或幾=T6,

所以直線方程為3x+y+12=O或3x+y-8=O.

18.如圖,在四棱錐P-ABCD中,底面ABCl)為直角梯形,BCHAD,ABJ.BC,ZADC=ASo,

(1)求點(diǎn)。到平面PBC的距離;

(2)求二面角B-PC-O的平面角的余弦值.

【正確答案】(1)—(2)三叵

211

【分析】(1)建立空間直角坐標(biāo)系,計(jì)算平面P8C的法向量,由點(diǎn)面距離的向量公式即得

解;

(2)計(jì)算平面PCZ)的法向量,結(jié)合(1)中平面PBC的法向量,利用二面角的向量公式即

得解

(1)由題意,PAJ_平面ABa),BC//AD,ABlBC,

.-.ABJ-AD

以A為坐標(biāo)原點(diǎn),AB,4λAP所在直線為X,XZ軸建立如圖所示的空間直角坐標(biāo)系

則P(O,0,1),B(1,O,O),C(1,2,O),D(0,3,0),

設(shè)平面PBC的一個(gè)法向量為Zi=(X,y,z),

PB=(1,0,-1),BC=(0,2,O),CD=(-?.1,0),

n`PB=x-z=O

取X=1,得〃=(1,0,1),

n?BC=2y=0

明。|_夜

.??點(diǎn)。到平面的距離

P8Cd=???

(2)由(1)可得平面尸BC的一個(gè)法向量為〃=(1,0,1),

設(shè)平面PCD的一個(gè)法向量為"2=3"C),

PC=(1,2,-1),CD=(-h1,0),

m?PC=a+2b-c=0

取α=l得m=(1,1,3),

m?CD=-α+?=0

設(shè)二面角B-PC-D的平面角為a,由圖得二面角為鈍角

m?nI4—2>∕22

故CoSa=一|

Imil川11

19.全世界人們越來越關(guān)注環(huán)境保護(hù)問題,某監(jiān)測站點(diǎn)于2016年8月某日起連續(xù)〃天監(jiān)測

空氣質(zhì)量指

[0,50)[50,100)[l∞,150)[150,200)[200,250)

數(shù)(〃g/%3)

空氣質(zhì)量等

空氣優(yōu)空氣良輕度污染中度污染重度污染

級(jí)

天數(shù)2040mIO5

(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出小機(jī)的值,并完成頻率分布直方圖;

⑵在空氣質(zhì)量指數(shù)分別屬于[50,100)和[150,200)監(jiān)測數(shù)據(jù)中,用分層抽樣的方法抽取5天,

再從中任意選取2天,求事件4“兩天空氣都為良”發(fā)生的概率.

【正確答案】⑴〃=IOO,∕n=25,直方圖見解析

(2)1

【分析】(1)根據(jù)頻率的定義可求得〃,從而求得相,進(jìn)一步計(jì)算每組的頻率,從而完成頻

率分布直方圖;

⑵根據(jù)分層抽樣的定義可以確定空氣質(zhì)量指數(shù)為[50,100)和[150,200)的監(jiān)測天數(shù)中分別抽

取4天和1天,再根據(jù)古典概率模型計(jì)算公式即可求解.

【詳解】(1)因?yàn)?.004x50=—,解得〃=IO0,

n

因?yàn)?0+40+帆+10+5=100,解得加=25,

4025105

=0.008,=0.005,=0.002,=0.001.

100x50100x50100×50IOOX50

完成頻率分布直方圖如圖:

頻率

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001----1空氣質(zhì)量指數(shù)(μg∕ι∏3)

O50100150200250X

(2)空氣質(zhì)量指數(shù)為[50,100)和[150,200)的監(jiān)測天數(shù)中分別抽取4天和1天,

在所抽取的5天中,將空氣質(zhì)量指數(shù)為[50,100)的4天分別記為〃力,Gd,將空氣質(zhì)量指數(shù)

為[150,200)的1天記為。.

從中任取2天的基本事件分別為(。,力),3,c),Qd),3,e),(b,c),(h,d),(b,e),(c,d),(Ge),

(d,e),共10天,

其中事件A“兩天空氣都為良”包含的基本事件為3㈤,3,c),Qd),(btc),(Ad),(c,d),

共6天,

所以事件A”兩天空氣都為良”發(fā)生的概率P=^=∣.

20.已知等差數(shù)列{%}的前〃項(xiàng)和為S“,且邑=-18,S11=O.

(1)求數(shù)列{a,,}的通項(xiàng)公式;

q

Q)若b"=",求證:數(shù)列{〃}是等差數(shù)列.

n

⑶求數(shù)列{∣為∣}的前"項(xiàng)和1.

【正確答案】(IM=2〃-12

(2)見解析

⑶IF=1?2?n-rr,?,<n,<5

In^-1ln+60,n≥6

【分析】(1)設(shè)等差數(shù)列{q}的首項(xiàng)為4、公差為d,利用等差數(shù)列的前〃項(xiàng)和公式得到關(guān)

于卬和d的方程組,進(jìn)一步求出通項(xiàng)公式;

(2)先利用等差數(shù)列的前〃項(xiàng)和公式求出5“和打,再利用等差數(shù)列的定義進(jìn)行證明;

(3)利用絕對值的代數(shù)意義和分類討論思想,按1≤“≤5或∕1≥6分別進(jìn)行求和.

【詳解】(1)解:設(shè)等差數(shù)列{%}的首項(xiàng)為4、公差為d,

因?yàn)镾2=T8,S11=O,

2a+<r∕=-18

所以l

11%+55d=0'

a=-10

解得l

d=2

所以為=-10+2(〃-1)=2〃-12,

即數(shù)列{”,,}的通項(xiàng)公式為%=2〃-12.

2

(2)解:由(1)得:Stl=------------------=n-11/?,

S

b一F一11,

nn

則?+.-bn=[(n+1)-11]-(n-11)=1,

所以數(shù)列出}是等差數(shù)列.

(3)解:當(dāng)1≤"≤5時(shí),an=2n-l2<0,

2*4

Tn=-at-a2------4=Tq+a2+---+aιl')=-Sll=Πn-n,

當(dāng)〃上6時(shí),47,,=2H-12≥0,

τ

,,=-al-a2-a3-a4-as+afl+aj+---+all

=q+/+%+。4+%+。6+%+…+。〃—2(%+生+%+。4+。5)

2

=Szr—2S5=M—1lπ÷60;

lln—π2,l<n≤5

綜上所述,工、=

n2-11/7+60,n≥6

21.若數(shù)列{4}的前“項(xiàng)和為%且滿足等式4+25“=3.

(1)求數(shù)列{q,}的通項(xiàng)公式;

(2)能否在數(shù)列{%}中找到這樣的三項(xiàng),它們按原來的順序構(gòu)成等差數(shù)列?說明理由;

1

(3)令H=Iogl為+;,記函數(shù)/(x)=bnx+2b,,+ix+%?(〃∈M')的圖像在X軸上截得的線段

3乙

12"T

長為C,設(shè)騫=:(“2+。2。3+…+GTG)S≥2),求小并證明.取口T>-

4nn

1Γ-Ξ(2Ξ1)

【正確答案】(1)?=-;(2)不存在,理由見解析;(3)'"一1,證明見解析.

3n——

2

【分析】(1)由遞推式,結(jié)合α”,2S“的關(guān)系易得{"“}是首項(xiàng)為1,公比為;的等比數(shù)列,寫

出通項(xiàng)公式即可.

(2)令l≤Z<"z<〃有成等差數(shù)歹U,利用等差中項(xiàng)的性質(zhì)可得3g*+3"f=2,再結(jié)

合3吁《+3時(shí)”的取值范圍,易得矛盾結(jié)論,即證存在性.

(3)由題設(shè)可得%~4再應(yīng)用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論