江蘇省蘇州市、常熟市市級名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第1頁
江蘇省蘇州市、常熟市市級名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第2頁
江蘇省蘇州市、常熟市市級名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第3頁
江蘇省蘇州市、常熟市市級名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第4頁
江蘇省蘇州市、常熟市市級名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省蘇州市、常熟市市級名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a(chǎn)3+a2=2a52.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結(jié)論有()個.A.3 B.4 C.2 D.13.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.4.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動點P從點A開始沿AB向點B以1cm/s的速度移動,動點Q從點B開始沿BC向點C以2cm/s的速度移動,若P,Q兩點分別從A,B兩點同時出發(fā),P點到達(dá)B點運動停止,則△PBQ的面積S隨出發(fā)時間t的函數(shù)關(guān)系圖象大致是()A. B. C. D.5.下列運算正確的是()A.6-3=3B.-32=﹣3C.a(chǎn)?a2=a2D.(2a6.下列多邊形中,內(nèi)角和是一個三角形內(nèi)角和的4倍的是()A.四邊形B.五邊形C.六邊形D.八邊形7.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-68.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.199.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關(guān)系是()A.M>N B.M=N C.M<N D.不能確定10.如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的頂點A的坐標(biāo)為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數(shù)y=kx(k>0,x>0)的圖象經(jīng)過點C,則A.33B.32C.2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象經(jīng)過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.12.用一張扇形紙片圍成一個圓錐的側(cè)面(接縫處不計),若這個扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個圓錐的母線長為_____cm.13.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________14.4的平方根是.15.用換元法解方程,設(shè)y=,那么原方程化為關(guān)于y的整式方程是_____.16.如圖,已知拋物線和x軸交于兩點A、B,和y軸交于點C,已知A、B兩點的橫坐標(biāo)分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點的坐標(biāo)為_____.17.已知關(guān)于X的一元二次方程有實數(shù)根,則m的取值范圍是____________________三、解答題(共7小題,滿分69分)18.(10分)如圖,有6個質(zhì)地和大小均相同的球,每個球只標(biāo)有一個數(shù)字,將標(biāo)有3,4,5的三個球放入甲箱中,標(biāo)有4,5,6的三個球放入乙箱中.(1)小宇從甲箱中隨機模出一個球,求“摸出標(biāo)有數(shù)字是3的球”的概率;(2)小宇從甲箱中、小靜從乙箱中各自隨機摸出一個球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字大1,則稱小宇“略勝一籌”.請你用列表法(或畫樹狀圖)求小宇“略勝一籌”的概率.19.(5分)先化簡,再求值:(﹣m+1)÷,其中m的值從﹣1,0,2中選?。?0.(8分)如圖,AB是⊙O直徑,BC⊥AB于點B,點C是射線BC上任意一點,過點C作CD切⊙O于點D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.21.(10分)已知關(guān)于的方程mx2+(2m-1)x+m-1=0(m≠0).求證:方程總有兩個不相等的實數(shù)根;若方程的兩個實數(shù)根都是整數(shù),求整數(shù)的值.22.(10分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點M稱為碟頂.由定義知,取AB中點N,連結(jié)MN,MN與AB的關(guān)系是_____.拋物線y=對應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),則m=_____,對應(yīng)的碟寬AB是_____.拋物線y=ax2﹣4a﹣(a>0)對應(yīng)的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.23.(12分)某中學(xué)為了考察九年級學(xué)生的中考體育測試成績(滿分30分),隨機抽查了40名學(xué)生的成績(單位:分),得到如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):(3)根據(jù)樣本數(shù)據(jù),估計該中學(xué)九年級2000名學(xué)生中,體育測試成績得滿分的大約有多少名學(xué)生。24.(14分)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=kx的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=12,OB=4,OE=2(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;(2)求△OCD的面積;(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)去括號法則,積的乘方的性質(zhì),完全平方公式,合并同類項法則,對各選項分析判斷后利用排除法求解.【詳解】解:A、因為﹣(a﹣1)=﹣a+1,故本選項錯誤;B、(﹣2a3)2=4a6,正確;C、因為(a﹣b)2=a2﹣2ab+b2,故本選項錯誤;D、因為a3與a2不是同類項,而且是加法,不能運算,故本選項錯誤.故選B.【點睛】本題考查了合并同類項,積的乘方,完全平方公式,理清指數(shù)的變化是解題的關(guān)鍵.2、A【解析】

利用拋物線的對稱性可確定A點坐標(biāo)為(-3,0),則可對①進(jìn)行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進(jìn)行判斷;由拋物線開口向下得到a>0,再利用對稱軸方程得到b=2a>0,則可對③進(jìn)行判斷;利用x=-1時,y<0,即a-b+c<0和a>0可對④進(jìn)行判斷.【詳解】∵拋物線的對稱軸為直線x=-1,點B的坐標(biāo)為(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正確;∵拋物線與x軸有2個交點,∴△=b2-4ac>0,所以②正確;∵拋物線開口向下,∴a>0,∵拋物線的對稱軸為直線x=-=-1,∴b=2a>0,∴ab>0,所以③錯誤;∵x=-1時,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正確.故選A.【點睛】本題考查了拋物線與x軸的交點:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2-4ac決定拋物線與x軸的交點個數(shù):△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.也考查了二次函數(shù)的性質(zhì).3、D【解析】

根據(jù)正方形的邊長,根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關(guān)鍵.4、C【解析】

根據(jù)題意表示出△PBQ的面積S與t的關(guān)系式,進(jìn)而得出答案.【詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發(fā)時間t的函數(shù)關(guān)系圖象大致是二次函數(shù)圖象,開口向下.故選C.【點睛】此題主要考查了動點問題的函數(shù)圖象,正確得出函數(shù)關(guān)系式是解題關(guān)鍵.5、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.6、C【解析】

利用多邊形的內(nèi)角和公式列方程求解即可【詳解】設(shè)這個多邊形的邊數(shù)為n.由題意得:(n﹣2)×180°=4×180°.解得:n=1.答:這個多邊形的邊數(shù)為1.故選C.【點睛】本題主要考查的是多邊形的內(nèi)角和公式,掌握多邊形的內(nèi)角和公式是解題的關(guān)鍵.7、B【解析】

先根據(jù)多項式乘以多項式的法則,將(x-2)(x+3)展開,再根據(jù)兩個多項式相等的條件即可確定p、q的值.【詳解】解:∵(x-2)(x+3)=x2+x-1,

又∵(x-2)(x+3)=x2+px+q,

∴x2+px+q=x2+x-1,

∴p=1,q=-1.

故選:B.【點睛】本題主要考查多項式乘以多項式的法則及兩個多項式相等的條件.多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.兩個多項式相等時,它們同類項的系數(shù)對應(yīng)相等.8、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.9、A【解析】

若比較M,N的大小關(guān)系,只需計算M-N的值即可.【詳解】解:∵M(jìn)=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.10、D【解析】解:∵四邊形ABCD是平行四邊形,點A的坐標(biāo)為(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故選D.點睛:本題考查了平行四邊形的性質(zhì),掌握平行四邊形的性質(zhì)以及反比例函數(shù)圖象上點的坐標(biāo)特征是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-1【解析】試題解析:設(shè)點A的坐標(biāo)為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數(shù)圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數(shù)k的幾何意義.12、1【解析】

設(shè)這個圓錐的母線長為xcm,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設(shè)這個圓錐的母線長為xcm,根據(jù)題意得?2π?15?x=90π,解得x=1,即這個圓錐的母線長為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.13、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.14、±1.【解析】試題分析:∵,∴4的平方根是±1.故答案為±1.考點:平方根.15、6y2-5y+2=0【解析】

根據(jù)y=,將方程變形即可.【詳解】根據(jù)題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【點睛】此題考查了換元法解分式方程,利用了整體的思想,將方程進(jìn)行適當(dāng)?shù)淖冃问墙獗绢}的關(guān)鍵.16、(,)【解析】

連接AC,根據(jù)題意易證△AOC∽△COB,則,求得OC=2,即點C的坐標(biāo)為(0,2),可設(shè)拋物線解析式為y=a(x+1)(x﹣4),然后將C點坐標(biāo)代入求解,最后將解析式化為頂點式即可.【詳解】解:連接AC,∵A、B兩點的橫坐標(biāo)分別為﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴點C的坐標(biāo)為(0,2),∵A、B兩點的橫坐標(biāo)分別為﹣1,4,∴設(shè)拋物線解析式為y=a(x+1)(x﹣4),把點C的坐標(biāo)代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此拋物線頂點的坐標(biāo)為(,).故答案為:(,).【點睛】本題主要考查相似三角形的判定與性質(zhì),拋物線的頂點式,解此題的關(guān)鍵在于熟練掌握其知識點,利用相似三角形的性質(zhì)求得關(guān)鍵點的坐標(biāo).17、m≤3且m≠2【解析】試題解析:∵一元二次方程有實數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.三、解答題(共7小題,滿分69分)18、(1);(2)P(小宇“略勝一籌”)=.【解析】分析:(1)由題意可知,小宇從甲箱中任意摸出一個球,共有3種等可能結(jié)果出現(xiàn),其中結(jié)果為3的只有1種,由此可得小宇從甲箱中任取一個球,剛好摸到“標(biāo)有數(shù)字3”的概率為;(2)根據(jù)題意通過列表的方式列舉出小宇和小靜摸球的所有等可能結(jié)果,然后根據(jù)表中結(jié)果進(jìn)行解答即可.詳解:(1)P(摸出標(biāo)有數(shù)字是3的球)=.(2)小宇和小靜摸球的所有結(jié)果如下表所示:小靜小宇4563(3,4)(3,5)(3,6)4(4,4)(4,5)(4,6)5(5,4)(5,5)(5,6)從上表可知,一共有九種可能,其中小宇所摸球的數(shù)字比小靜的大1的有一種,因此P(小宇“略勝一籌”)=.點睛:能正確通過列表的方式列舉出小宇在甲箱中任摸一個球和小靜在乙箱中任摸一個球的所有等可能結(jié)果,是正確解答本題第2小題的關(guān)鍵.19、,當(dāng)m=0時,原式=﹣1.【解析】

原式括號中兩項通分,并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果.根據(jù)分?jǐn)?shù)分母不為零的性質(zhì),不等于-1、2,將代入原式即可解出答案.【詳解】解:原式,,,,∵且,∴當(dāng)時,原式.【點睛】本題主要考查分?jǐn)?shù)的性質(zhì)、通分,四則運算法則以及倒數(shù).20、(1)證明見解析;(2).【解析】

(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長定理證明即可;(2)根據(jù)含30°的直角三角形的性質(zhì)、正切的定義計算即可.【詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.【點睛】本題考查了切線的性質(zhì)、直角三角形的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.21、(1)證明見解析(2)m=1或m=-1【解析】試題分析:(1)由于m≠0,則計算判別式的值得到,從而可判斷方程總有兩個不相等的實數(shù)根;

(2)先利用求根公式得到然后利用有理數(shù)的整除性確定整數(shù)的值.試題解析:(1)證明:∵m≠0,∴方程為一元二次方程,∴此方程總有兩個不相等的實數(shù)根;(2)∵∵方程的兩個實數(shù)根都是整數(shù),且m是整數(shù),∴m=1或m=?1.22、(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質(zhì)分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進(jìn)而得出m的值,即可得出AB的值;(2)①根據(jù)題意得出拋物線必過(2,0),進(jìn)而代入求出答案;②根據(jù)y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進(jìn)而得出答案.【詳解】(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點,∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當(dāng)m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應(yīng)的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,∴在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點睛】此題主要考查了二次函數(shù)綜合以及等腰直角三角形的性質(zhì),正確應(yīng)用等腰直角三角形的性質(zhì)是解題關(guān)鍵.23、(1)25;(2)平均數(shù):28.15,所以眾數(shù)是28,中位數(shù)為28,(3)體育測試成績得滿分的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論