版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽阜陽鴻升中學(xué)2024屆中考數(shù)學(xué)五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機(jī)在大正方形及其內(nèi)部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.52.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質(zhì)量約為0.056盎司.將0.056用科學(xué)記數(shù)法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣13.下列實數(shù)中,有理數(shù)是()A. B. C.π D.4.小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預(yù)祝中考成功”,其中“預(yù)”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是()A. B. C. D.5.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結(jié)論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結(jié)論的序號是()A.③④ B.②③ C.①④ D.①②③6.小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使?ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯誤的是()A.①② B.②③ C.①③ D.②④7.施工隊要鋪設(shè)1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務(wù).設(shè)原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=28.世界上最小的開花結(jié)果植物是澳大利亞的出水浮萍,這種植物的果實像一個微小的無花果,質(zhì)量只有0.0000000076克,將數(shù)0.0000000076用科學(xué)記數(shù)法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×1089.已知二次函數(shù)y=(x+m)2–n的圖象如圖所示,則一次函數(shù)y=mx+n與反比例函數(shù)y=的圖象可能是()A. B. C. D.10.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′,連接CC′.若∠CC′B′=32°,則∠B的大小是()A.32° B.64° C.77° D.87°11.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.12.若※是新規(guī)定的某種運算符號,設(shè)a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,CD⊥AB于D,E是AC的中點.若AD=6,DE=5,則CD的長等于.14.2017年5月5日我國自主研發(fā)的大型飛機(jī)C919成功首飛,如圖給出了一種機(jī)翼的示意圖,用含有m、n的式子表示AB的長為______.15.如圖,在△ABC中,D,E分別是AB,AC邊上的點,DE∥BC.若AD=6,BD=2,DE=3,則BC=______.16.如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m.17.如圖,甲、乙兩船同時從港口出發(fā),甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達(dá)點C,乙船正好到達(dá)甲船正西方向的點B,則乙船的航程為______海里(結(jié)果保留根號).18.如圖,點A在雙曲線上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k=______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,其中x=,y=.20.(6分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于點A(1,0)和點B(﹣3,0).繞點A旋轉(zhuǎn)的直線l:y=kx+b1交拋物線于另一點D,交y軸于點C.(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)點D在第二象限且滿足CD=5AC時,求直線l的解析式;(3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標(biāo)為4,點Q在拋物線上,當(dāng)直線l與y軸的交點C位于y軸負(fù)半軸時,是否存在以點A,D,P,Q為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標(biāo);若不存在,請說明理由.21.(6分)已知拋物線F:y=x1+bx+c的圖象經(jīng)過坐標(biāo)原點O,且與x軸另一交點為(﹣33(1)求拋物線F的解析式;(1)如圖1,直線l:y=33x+m(m>0)與拋物線F相交于點A(x1,y1)和點B(x1,y1)(點A在第二象限),求y1﹣y1(3)在(1)中,若m=43①判斷△AA′B的形狀,并說明理由;②平面內(nèi)是否存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.22.(8分)如圖,△ABC三個定點坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請畫出△ABC關(guān)于y軸對稱的△A1B1C1;以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內(nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.23.(8分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.24.(10分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)25.(10分)某校團(tuán)委為研究該校學(xué)生的課余活動情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、其他等四個方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列各題:(1)在這次研究中,一共調(diào)查了多少名學(xué)生?(2)“其他”在扇形統(tǒng)計圖中所占的圓心角是多少度?(3)補全頻數(shù)分布直方圖;(4)該校共有3200名學(xué)生,請你估計一下全校大約有多少學(xué)生課余愛好是閱讀.26.(12分)計算:()-1+()0+-2cos30°.27.(12分)為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
設(shè)大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【詳解】解:設(shè)大正方形邊長為2,則小正方形邊長為1,因為面積比是相似比的平方,
所以大正方形面積為4,小正方形面積為1,
則針孔扎到小正方形(陰影部分)的概率是;故選:B.【點睛】本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.2、B【解析】
0.056用科學(xué)記數(shù)法表示為:0.056=,故選B.3、B【解析】
實數(shù)分為有理數(shù),無理數(shù),有理數(shù)有分?jǐn)?shù)、整數(shù),無理數(shù)有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無理數(shù),故本選項錯誤,
B、無限循環(huán)小數(shù)為有理數(shù),符合;
C、為無理數(shù),故本選項錯誤;
D、不能正好開方,即為無理數(shù),故本選項錯誤;故選B.【點睛】本題考查的知識點是實數(shù)范圍內(nèi)的有理數(shù)的判斷,解題關(guān)鍵是從實際出發(fā)有理數(shù)有分?jǐn)?shù),自然數(shù)等,無理數(shù)有、根式下開不盡的從而得到了答案.4、C【解析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:A、“預(yù)”的對面是“考”,“祝”的對面是“成”,“中”的對面是“功”,故本選項錯誤;B、“預(yù)”的對面是“功”,“?!钡膶γ媸恰翱肌?,“中”的對面是“成”,故本選項錯誤;C、“預(yù)”的對面是“中”,“?!钡膶γ媸恰翱肌?,“成”的對面是“功”,故本選項正確;D、“預(yù)”的對面是“中”,“?!钡膶γ媸恰俺伞?,“考”的對面是“功”,故本選項錯誤.故選C【點睛】考核知識點:正方體的表面展開圖.5、C【解析】試題分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.解:①當(dāng)x=1時,y=a+b+c=1,故本選項錯誤;②當(dāng)x=﹣1時,圖象與x軸交點負(fù)半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項正確;③由拋物線的開口向下知a<1,∵對稱軸為1>x=﹣>1,∴2a+b<1,故本選項正確;④對稱軸為x=﹣>1,∴a、b異號,即b>1,∴abc<1,故本選項錯誤;∴正確結(jié)論的序號為②③.故選B.點評:二次函數(shù)y=ax2+bx+c系數(shù)符號的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對稱軸和a的符號確定:由對稱軸公式x=﹣b2a判斷符號;(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>1;否則c<1;(4)當(dāng)x=1時,可以確定y=a+b+C的值;當(dāng)x=﹣1時,可以確定y=a﹣b+c的值.6、B【解析】
A、∵四邊形ABCD是平行四邊形,當(dāng)①AB=BC時,平行四邊形ABCD是菱形,當(dāng)②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當(dāng)②∠ABC=90°時,平行四邊形ABCD是矩形,當(dāng)AC=BD時,這是矩形的性質(zhì),無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;C、∵四邊形ABCD是平行四邊形,當(dāng)①AB=BC時,平行四邊形ABCD是菱形,當(dāng)③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當(dāng)②∠ABC=90°時,平行四邊形ABCD是矩形,當(dāng)④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.故選C.7、A【解析】分析:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關(guān)鍵是讀懂題意,找出合適的等量關(guān)系,列出方程.8、A【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:將0.0000000076用科學(xué)計數(shù)法表示為.故選A.【點睛】本題考查了用科學(xué)計數(shù)法表示較小的數(shù),一般形式為a×,其中,n為由原數(shù)左邊起第一個不為0的數(shù)字前面的0的個數(shù)所決定.9、C【解析】試題解析:觀察二次函數(shù)圖象可知:∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、四象限,反比例函數(shù)的圖象在第二、四象限.故選D.10、C【解析】試題分析:由旋轉(zhuǎn)的性質(zhì)可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.考點:旋轉(zhuǎn)的性質(zhì).11、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.12、C【解析】解:由題意得:,∴,∴x=±1.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.14、【解析】
過點C作CE⊥CF延長BA交CE于點E,先求得DF的長,可得到AE的長,最后可求得AB的長.【詳解】解:延長BA交CE于點E,設(shè)CF⊥BF于點F,如圖所示.在Rt△BDF中,BF=n,∠DBF=30°,∴.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴.故答案為:.【點睛】此題考查解直角三角形的應(yīng)用,解題的關(guān)鍵在于做輔助線.15、1【解析】
根據(jù)已知DE∥BC得出=進(jìn)而得出BC的值【詳解】∵DE∥BC,AD=6,BD=2,DE=3,∴△ADE∽△ABC,∴,∴,∴BC=1,故答案為1.【點睛】此題考查了平行線分線段成比例的性質(zhì),解題的關(guān)鍵在于利用三角形的相似求三角形的邊長.16、1.【解析】
根據(jù)已知建立平面直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過把y=-1.5代入拋物線解析式得出水面寬度,即可得出答案【詳解】解:建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,
拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半1米,拋物線頂點C坐標(biāo)為(0,1),
設(shè)頂點式y(tǒng)=ax1+1,把A點坐標(biāo)(-1,0)代入得a=-0.5,
∴拋物線解析式為y=-0.5x1+1,
當(dāng)水面下降1.5米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=-1.5時,對應(yīng)的拋物線上兩點之間的距離,也就是直線y=-1與拋物線相交的兩點之間的距離,
可以通過把y=-1.5代入拋物線解析式得出:
-1.5=-0.5x1+1,
解得:x=±3,
1×3-4=1,
所以水面下降1.5m,水面寬度增加1米.
故答案為1.【點睛】本題考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標(biāo)系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵,學(xué)會把實際問題轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題,屬于中考??碱}型.17、10海里.【解析】
本題可以求出甲船行進(jìn)的距離AC,根據(jù)三角函數(shù)就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達(dá)甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點睛】本題主要考查的是解直角三角形的應(yīng)用-方向角問題及三角函數(shù)的定義,理解方向角的定義是解決本題的關(guān)鍵.18、-4【解析】:由反比例函數(shù)解析式可知:系數(shù),∵S△AOB=2即,∴;又由雙曲線在二、四象限k<0,∴k=-4三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、x+y,.【解析】試題分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入即可解答本題.試題解析:原式===x+y,當(dāng)x=,y==2時,原式=﹣2+2=.20、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當(dāng)x=﹣2時,最大值為;(4)存在,點D的橫坐標(biāo)為﹣3或或﹣.【解析】
(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當(dāng)AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【詳解】(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數(shù)的表達(dá)式為:①;(2)過點D作DF⊥x軸交于點F,過點E作y軸的平行線交直線AD于點M,∵OC∥DF,∴OF=5OA=5,故點D的坐標(biāo)為(﹣5,6),將點A、D的坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n得:,解得:即直線AD的表達(dá)式為:y=﹣x+1,(3)設(shè)點E坐標(biāo)為則點M坐標(biāo)為則∵故S△ACE有最大值,當(dāng)x=﹣2時,最大值為;(4)存在,理由:①當(dāng)AP為平行四邊形的一條邊時,如下圖,設(shè)點D的坐標(biāo)為將點A向左平移2個單位、向上平移4個單位到達(dá)點P的位置,同樣把點D左平移2個單位、向上平移4個單位到達(dá)點Q的位置,則點Q的坐標(biāo)為將點Q的坐標(biāo)代入①式并解得:②當(dāng)AP為平行四邊形的對角線時,如下圖,設(shè)點Q坐標(biāo)為點D的坐標(biāo)為(m,n),AP中點的坐標(biāo)為(0,2),該點也是DQ的中點,則:即:將點D坐標(biāo)代入①式并解得:故點D的橫坐標(biāo)為:或或.【點睛】本題考查的是二次函數(shù)綜合運用,涉及到圖形平移、平行四邊形的性質(zhì)等,關(guān)鍵是(4)中,用圖形平移的方法求解點的坐標(biāo),本題難度大.21、(1)y=x1+33x;(1)y1﹣y1=233π;(3)①△AA′B為等邊三角形,理由見解析;②平面內(nèi)存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標(biāo)為(13,23)、(﹣【解析】
(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法即可求出拋物線F的解析式;(1)將直線l的解析式代入拋物線F的解析式中,可求出x1、x1的值,利用一次函數(shù)圖象上點的坐標(biāo)特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根據(jù)m的值可得出點A、B的坐標(biāo),利用對稱性求出點A′的坐標(biāo).①利用兩點間的距離公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B為等邊三角形;②根據(jù)等邊三角形的性質(zhì)結(jié)合菱形的性質(zhì),可得出存在符合題意得點P,設(shè)點P的坐標(biāo)為(x,y),分三種情況考慮:(i)當(dāng)A′B為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標(biāo);(ii)當(dāng)AB為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標(biāo);(iii)當(dāng)AA′為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標(biāo).綜上即可得出結(jié)論.【詳解】(1)∵拋物線y=x1+bx+c的圖象經(jīng)過點(0,0)和(﹣33∴c=013-∴拋物線F的解析式為y=x1+33(1)將y=33x+m代入y=x1+33x,得:x解得:x1=﹣π,x1=π,∴y1=﹣133π+m,y1=∴y1﹣y1=(133π+m)﹣(﹣13(3)∵m=43∴點A的坐標(biāo)為(﹣233,23∵點A′是點A關(guān)于原點O的對稱點,∴點A′的坐標(biāo)為(233,﹣①△AA′B為等邊三角形,理由如下:∵A(﹣233,23),B(233∴AA′=83,AB=83,A′B=∴AA′=AB=A′B,∴△AA′B為等邊三角形.②∵△AA′B為等邊三角形,∴存在符合題意的點P,且以點A、B、A′、P為頂點的菱形分三種情況,設(shè)點P的坐標(biāo)為(x,y).(i)當(dāng)A′B為對角線時,有x-2解得x=2∴點P的坐標(biāo)為(13,23(ii)當(dāng)AB為對角線時,有x=-2解得:x=-2∴點P的坐標(biāo)為(﹣233,(iii)當(dāng)AA′為對角線時,有x=-2解得:x=-2∴點P的坐標(biāo)為(﹣23綜上所述:平面內(nèi)存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標(biāo)為(13,23)、(﹣233【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次函數(shù)圖象上點的坐標(biāo)特征、等邊三角形的判定與性質(zhì)以及菱形的判定與性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(1)將一次函數(shù)解析式代入二次函數(shù)解析式中求出x1、x1的值;(3)①利用勾股定理(兩點間的距離公式)求出AB、AA′、A′B的值;②分A′B為對角線、AB為對角線及AA′為對角線三種情況求出點P的坐標(biāo).22、(1)見解析;(2)圖見解析;.【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于y軸的對稱點A1、B1、C1的位置,然后順次連接即可.(2)連接A1O并延長至A2,使A2O=2A1O,連接B1O并延長至B2,使B2O=2B1O,連接C1O并延長至C2,使C2O=2C1O,然后順次連接即可,再根據(jù)相似三角形面積的比等于相似比的平方解答.【詳解】解:(1)△A1B1C1如圖所示.(2)△A2B2C2如圖所示.∵△A1B1C1放大為原來的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比為.∴S△A1B1C1:S△A2B2C2=()2=.23、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當(dāng)60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當(dāng)60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當(dāng)0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當(dāng)60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當(dāng)0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點睛】此題是三角形綜合題,主要考查全等三角形的判定和性質(zhì).等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考常考題型.24、(1)證明見解析;(2);【解析】
(1)連接OD,先根據(jù)切線的性質(zhì)得到∠CDO=90°,再根據(jù)平行線的性質(zhì)得到∠AOC=∠OBD,∠COD=∠ODB,又因為OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根據(jù)全等三角形的判定與性質(zhì)得到∠CAO=∠CDO=90°,根據(jù)切線的判定即可得證;(2)因為AB=OC=4,OB=OD,Rt△ODC與Rt△OAC是含30°的直角三角形,從而得到∠DOB=60°,即△BOD為等邊三角形,再用扇形的面積減去△BOD的面積即可.【詳解】(1)證明:連接OD,∵CD與圓O相切,∴OD⊥CD,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國醫(yī)師節(jié)精彩演講稿(9篇)
- 中學(xué)生學(xué)習(xí)保證書
- 夢課件素材教學(xué)課件
- 彌勒金辰時代廣場招商提案
- 影像科報告診斷質(zhì)量評價標(biāo)準(zhǔn)
- 腦癱案例課件教學(xué)課件
- 機(jī)車車輛空氣調(diào)節(jié)系統(tǒng) 第3部分:能源效率 征求意見稿
- 護(hù)理課件講解教學(xué)課件
- 2024西安醫(yī)學(xué)院附屬寶雞醫(yī)院護(hù)理人員招聘(8人)筆試備考題庫及答案解析
- 余杭區(qū)六年級上學(xué)期語文期中檢測試卷
- 燃燒器控制器LFL1說明
- 二次回路接線圖中常見的文字符號
- 五十年的同學(xué)會配樂詩朗誦.
- 中國石油天然氣股份有限公司股權(quán)處置實施細(xì)則
- 高中化學(xué)趣味知識競賽(課堂PPT)
- 三管塔筏板計算
- 柴油購銷合同
- MD380總體技術(shù)方案重點講義
- 天車道軌施工方案
- 傳染病轉(zhuǎn)診單
- 手術(shù)室各級護(hù)士崗位任職資格及職責(zé)
評論
0/150
提交評論