版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ea
GlobalMethaneTracker
DOCUMENTATION
2024VERSION
Lastupdated:19March2024
INTERNATIONALENERGY
AGENCY
TheIEAexaminesthe
fullspectrum
ofenergyissues
includingoil,gasand
coalsupplyand
demand,renewable
energytechnologies,
electricitymarkets,
energyefficiency,
accesstoenergy,
demandside
managementand
muchmore.Through
itswork,theIEA
advocatespoliciesthat
willenhancethe
reliability,affordability
andsustainabilityof
energyinits
31membercountries,
13association
countriesandbeyond.
Thispublicationandany
mapincludedhereinare
withoutprejudicetothe
statusoforsovereigntyover
anyterritory,tothe
delimitationofinternational
frontiersandboundariesand
tothenameofanyterritory,
cityorarea.
IEAmember
countries:
Australia
Austria
Belgium
Canada
CzechRepublic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Ireland
Italy
Japan
Korea
Lithuania
Luxembourg
Mexico
Netherlands
NewZealand
Norway
Poland
Portugal
SlovakRepublic
Spain
Sweden
Switzerland
RepublicofTürkiye
UnitedKingdom
UnitedStates
TheEuropean
Commissionalso
participatesinthe
workoftheIEA
IEAassociation
countries:
Argentina
Brazil
China
Egypt
India
Indonesia
Kenya
Morocco
Senegal
Singapore
SouthAfrica
Thailand
Ukraine
Source:IEA.
InternationalEnergyAgency
Website:
Iea
Contents
GlobalMethaneTracker2024
Documentation
IEA.CCBY4.0.
PAGE|3
Contents
Background 4
Methaneemissionestimates 5
Upstreamanddownstreamoilandgas 5
Incompletecombustionofflares 9
Coalminemethane 10
Emissionsfromfuelcombustion(enduse) 11
Wasteandagriculture 13
Methaneabatementestimates 14
Marginalabatementcostcurvesforoilandgas 14
Well-headpricesusedinnetpresentvaluecalculation 19
Marginalabatementcostcurvesforcoalminemethane 20
Energypricesusedinnetpresentvaluecalculation 24
Projectionsofenergy-relatedmethaneemissionsandassessedtemperaturerises.26
Glossary 28
Oilandgasabatementtechnologies 28
Coalminemethaneabatementtechnologies 30
Policyoptions 33
Policyexplorer 34
References 38
Background
GlobalMethaneTracker2023
Documentation
IEA.CCBY4.0.
PAGE|4
Background
TheIEA’sestimatesofmethaneemissionsareproducedwithintheframeworkoftheIEA’s
GlobalEnergyandClimateModel
(GEC).Since1993,theInternationalEnergyAgency(IEA)hasprovidedmedium-tolong-termenergyprojectionsusingthislarge-scalesimulationmodeldesignedtoreplicatehowenergymarketsfunctionandgeneratedetailedsector-by-sectorandregion-by-regionprojectionsfortheWorldEnergyOutlook(WEO)scenarios.Updatedeveryyear,themodelconsistsofthreemainmodules:finalenergyconsumption(coveringresidential,services,agriculture,industry,transportandnon-energyuse);energytransformationincludingpowergenerationandheat,refineryandothertransformation(suchashydrogenproduction);andenergysupply(oil,naturalgasandcoal).Outputsfromthemodelincludeenergyflowsbyfuel,investmentneedsandcosts,greenhousegasemissionsandend-userprices.
TheGECisaverydata-intensivemodelcoveringthewholeglobalenergysystem.Muchofthedataonenergysupply,transformationanddemand,aswellasenergypricesisobtainedfromtheIEA’sowndatabasesofenergyandeconomicstatistics
(/statistics
)andthroughcollaborationwithotherinstitutions.Forexample,fortheNetZeroby2050:ARoadmapfortheGlobalEnergySectorpublication,resultsfromboththeWEOand
EnergyTechnologyPerspectives
(ETP)
modelshavebeencombinedwiththosefromtheInternationalInstituteforAppliedSystemsAnalysis(IIASA)–inparticulartheGreenhouseGas-AirPollutionInteractionsandSynergies(GAINS)model–toevaluateairpollutantemissionsandresultanthealthimpacts.And,forthefirsttime,resultswerecombinedwiththeIIASA’sGlobalBiosphereManagementModel(GLOBIOM)toprovidedataonlanduseandnetemissionsimpactsofbioenergydemand.TheGECalsodrawsdatafromawiderangeofexternalsourceswhichareindicatedintherelevantsectionsofthe
GECdocumentation.
ThecurrentversionofGECcoversenergydevelopmentsupto2050in29regions.DependingonthespecificmoduleoftheWEM,individualcountriesarealsomodelled:16indemand;113inoilandnaturalgassupply;and32incoalsupply(seeAnnexAoftheGECdocumentation).
Methaneemissionestimates
GlobalMethaneTracker2023
Documentation
IEA.CCBY4.0.
PAGE|5
Methaneemissionestimates
TheGlobalMethaneTrackercoversallsourcesofmethanefromhumanactivity.Fortheenergysector,theseareIEAestimatesformethaneemissionsfromthesupplyoruseoffossilfuels(coal,oilandnaturalgas)andfromtheuseofbioenergy(suchassolidbioenergy,liquidbiofuelsandbiogases).Fornon-energysectors–waste,agricultureandothersources–referencevaluesbasedonpubliclyavailabledatasourcesareprovidedtoenableafullerpictureofmethanesources.
Upstreamanddownstreamoilandgas
Ourapproachtoestimatingmethaneemissionsfromglobaloilandgasoperationsreliesongeneratingcountry-specificandproductiontype-specificemissionintensitiesthatareappliedtoproductionandconsumptiondataonacountry-by-countrybasis.OurstartingpointistogenerateemissionintensitiesforupstreamanddownstreamoilandgasintheUnitedStates(Table1).TheUSGreenhouseGasInventory(USEPA,2023)isusedalongwithawiderangeofotherpublicly-reported,credibledatasources.Thehydrocarbon-,segment-andproduction-specificemissionintensitiesarethenfurthersegregatedintofugitive,ventedandincompleteflaringemissionstogiveatotalof19separateemissionintensities.
Table1.CategoriesofemissionsourcesandemissionsintensitiesintheUnited
States
Hydrocarbon
SegmentProductiontypeEmissionstype
Intensity
(massmethane/massoilorgas)
Oil
UpstreamOnshoreconventionalVented
0.36%
Oil
UpstreamOnshoreconventionalFugitive
0.09%
Oil
UpstreamOffshoreVented
0.36%
Oil
UpstreamOffshoreFugitive
0.09%
Oil
UpstreamUnconventionaloilVented
0.72%
Oil
UpstreamUnconventionaloilFugitive
0.18%
Oil
DownstreamVented
0.004%
Oil
DownstreamFugitive
0.001%
Oil
OnshoreconventionalIncomplete-flare
0.06%
Oil
OffshoreIncomplete-flare
0.01%
Oil
UnconventionalIncomplete-flare
0.04%
Naturalgas
UpstreamOnshoreconventionalVented
0.29%
Naturalgas
UpstreamOnshoreconventionalFugitive
0.11%
Naturalgas
UpstreamOffshoreVented
0.29%
IEA.CCBY
PAGE|6
4.0.
Hydrocarbon
Segment
Productiontype
Emissionstype
Intensity
(massmethane/massoilorgas)
Naturalgas
Upstream
Offshore
Fugitive
0.11%
NaturalgasUpstreamUnconventionalgasVented0.43%
Naturalgas
UpstreamUnconventionalgas
Fugitive
0.17%
Naturalgas
Downstream
Vented
0.15%
Naturalgas
Downstream
Fugitive
0.10%
TheUSemissionsintensitiesarescaledtoprovideemissionintensitiesinallothercountries.Thisscalingisbaseduponarangeofauxiliarycountry-specificdata.Fortheupstreamemissionintensities,thescalingisbasedontheageofinfrastructure,typesofoperatorwithineachcountry(namelyinternationaloilcompanies,independentcompaniesornationaloilcompanies)andaverageflaringintensity(flaringvolumesdividedbyoilproductionvolumes).Fordownstreamemissionintensities,country-specificscalingfactorswerebasedupontheextentofoilandgaspipelinenetworksandoilrefiningcapacityandutilisation.
Figure1
Methodologicalapproachforestimatingmethaneemissionsfromoilandgasoperations
IEA.CCBY4.0.
Thestrengthofregulationandoversight,incorporatinggovernmenteffectiveness,regulatoryqualityandtheruleoflawasgivenbytheWorldwideGovernanceIndicatorscompiledbytheWorldBank(2023),affectsthescalingofallintensities.Someadjustmentsweremadetothescalingfactorsinalimitednumberofcountriestotakeintoaccountotherdatathatweremadeavailable(wherethiswasconsideredtobesufficientlyrobust),suchascomprehensivemeasurementstudies.Thisincludesdataonsatellite-detectedlargeemittersand“basin-levelinversions”,whichusesatellitereadingstoassessmethaneemissionsacrossawideroilandgasproductionregion,basedondataprocessingby
IEA.CCBY4.0.
PAGE|7
Kayrros,anearthobservationfirm(seeBox1.6).Italsoincludesspecificpolicyeffortstocontrolmethaneemissionsfromtheoilandgassectors,astrackedinthe
IEAPoliciesDatabase.
Table2providestheresultantscalingfactorsinthetopoilandgasproducers(thecountrieslistedcover90%ofglobaloilandgasproduction).ThesescalingfactorsaredirectlyusedtomodifytheemissionsintensitiesinTable1.Forexample,theventedemissionintensityofonshoreconventionalgasproductionintheRussianFederation(hereafter“Russia”)istakenas0.29%×1.7=0.49%.Theseintensitiesarefinallyappliedtotheproduction(forupstreamemissions)orconsumption(fordownstreamemissions)ofoilandgaswithineachcountry.
Table2.ScalingfactorsappliedtoemissionintensitiesintheUnitedStates
Country
Oil&gas
production
in2023
OilGas
mtoeUpstreamDownstreamUpstream
Downstream
UnitedStates
17241.01.01.0
1.0
Russia
10782.31.31.7
1.1
SaudiArabia
6430.80.40.6
0.4
Canada
4521.00.51.0
0.5
Iran
4253.10.91.4
0.9
China
4091.50.91.1
0.8
UnitedArabEmirates
2491.40.71.2
0.6
Iraq
2311.40.50.8
0.5
Qatar
2271.10.61.0
0.6
Norway
2010.00.00.0
0.0
Brazil
1961.71.31.7
1.3
Kuwait
1631.40.71.1
0.7
Algeria
1584.71.42.1
1.4
Australia
1520.80.50.6
0.5
Mexico
1331.60.91.1
0.8
Kazakhstan
1162.81.42.5
1.4
Nigeria
1063.81.82.4
1.8
Oman
911.60.71.0
0.7
Malaysia
902.21.11.5
1.1
Indonesia
853.21.52.1
1.5
Egypt
852.41.01.3
1.0
Turkmenistan
7715.84.56.6
4.5
Argentina
752.51.11.8
1.1
Libya
723.71.01.7
1.0
India
673.21.62.1
1.5
Methaneemissionestimates
GlobalMethaneTracker2023
Documentation
IEA.CCBY4.0.
PAGE|8
Box1Integratingemissionsestimatesfromsatellites
TheGlobalMethaneTrackerintegratesresultsfromallpublicly-reported,crediblesourceswheredatahasbecomeavailable.Thisincludesemissionsdetectedbysatellites.Changesintheatmosphericconcentrationofmethanecanbeusedtoestimatetherateofemissionsfromasourcethatwouldhavecausedsuchachange.Thisisdonebasedondataprocessingby
Kayrros,
anearthobservationfirm,toconvertreadingsofconcentrationstoidentifylargesourcesofemissionsfromoilandgasoperations.Reportedemissionsencompassmethanesourcesabove5tonnesperhour.
OilandgasemissionsdetectedbysatellitesarereportedasaseparateitemwithintheMethaneTracker.Theseestimatesarebasedonaconservativescalingupofemissioneventsdirectlydetectedtotakeintoaccounttheperiodwithintheyearwhenobservationscouldbemade.Thisiscarriedoutforallregionswhereobservationswerepossibleforatleast20daysintheyear.
Theincreasingamountofdataandinformationfromsatelliteswillcontinuetoimproveglobalunderstandingofmethaneemissionslevelsandtheopportunitiestoreducethem.However,satellitesdohavesomelimitations:
.Existingsatellitesstruggletoprovidemeasurementsoverequatorialregions,northernareas,mountainranges,snowyorice-coveredregionsorforoffshoreoperations.Thismeansthattherearealargenumberofmajorproductionareaswhereemissionscannotbeobserved.
.Existingsatellitesshouldbeabletoprovidemethanereadingsgloballyonadailybasisbutthisisnotalwayspossiblebecauseofcloudcoverandotherweatherconditions.During2023therewerearound70countrieswheremethaneemissionsfromoilandgasoperationscouldbedetectedforatleast20days.Largeemissioneventswereobservedin20ofthesecountriesin2023.CoveragetendstobebestintheMiddleEast,AustraliaandpartofCentralAsia,whereadirectmeasurementcouldbemadeevery3-5days.Ontheremainingdays,cloudcoverageorotherinterferencepreventedmeasurementoperations.
.Theprocessofusingchangesintheatmosphericconcentrationofmethanetoestimateemissionsfromaparticularsourcecanrelyonalargelevelofauxiliarydataandbesubjecttoahighdegreeofuncertainty.
ThesatellitereadingsincludedintheGlobalMethaneTrackercurrentlyprovidedataonlyforlargeemittingsources.Thisis,ofcourse,subjecttoahighdegreeofuncertainty,butensuresthatcountry-by-countyestimatesprovideacomprehensivepictureofallmethaneemissionssources.Asadditionaldatabecomesavailablefrommeasurementcampaigns–whetherrecordedfromgroundoraerialprocessesorbysatellites–thesewillbeincorporatedintotheGlobalMethaneTrackerandestimatesadjustedaccordingly.
IEA.CCBY4.0.
PAGE|9
Incompletecombustionofflares
Ourapproachtoestimatingmethaneemissionsfromflaringreliesongeneratingcountry-specificandproductiontype-specificcombustionefficienciesthatareappliedtoflaringdataonacountry-by-countrybasis.GlobalestimatesofflaredvolumesofnaturalgasarebasedonreporteddatafromtheWorldBank’sGlobalGasFlaringReductionPartnership.ThesedataaretakenfromtheNationalOceanicandAtmosphericAdministration(NOAA)andthePayneInstitute(WorldBank,2023).
Combustionefficienciescanreduceasaresultoflowerproductionrates,highandvariablewinds,andpoormaintenanceresultingfromlackofregulatorypolicy,enforcementorcompanypolicy(Johnson,2001;Kostiuk,2004).Weestimatecombustionbaseduponarangeofauxiliarycountry-specificdata:
.Oilproductiontype(unconventionalonshore,conventionalonshoreandoffshore),companytypeandproductionstart-upyear,basedonRystadEnergyUCubedata.CompanytypeisgroupedinMajors(ExxonMobil,Chevron,BP,RoyalDutchShell,EniSpA,TotalEnergies,andConocoPhillips),NationalOilCompanies(NOCs)andOther(e.g.Independent,PrivateEquity).MaintenancelevelstoimproveflaringcombustionefficiencieswereappliedseparatelybycompanytypeassumingthatmorescrutinyfrominvestorsandthepublicisplacedontheMajorsascomparedtoNOCsorOther.
.FlaringdesignstandardsAPI521andAPI537wereconsideredgaugeflarestacksizes,assumingbest-casedesignandoptimalflareparametersduringearlyproductiontime(API,2014;API,2017).
.TheimpactofwindspeedwasincorporatedusingNASA’sPredictionofWorldwideEnergyResources(POWER)MeteorologyDataAccessViewer(NASA,2021).Onshorewindspeedswereassessedat10mandoffshorewindspeedsat50mtoreflectclosestheightofflarestacksinactualfacilitydesign.Windspeedvariabilityanditsimpactoncombustionefficiencywasincorporatedcorrespondingtothelocationofproduction.
.TheWorldBank’sWorldwideGovernanceIndicatorsdatabase(2023)wasusedasthebasistoassessthegeneralstrengthofregulatoryoversight.
Adjustmentsaremadetoconsiderdataonsatellite-detectedlargeemittersandspecificpolicyeffortstocontrolmethaneemissionsfromtheoilandgassectors,astrackedintheIEAPoliciesDatabase.Countrieswithstrongerflaringregulationandstrongregulatoryoversightarecalibratedassumingcompaniesweremandatedtoquicklyinspectandrepairanymalfunctioningorpoorperformingflaresites.Countrieswithweakflaringregulationandlowlevelsofoversightareassumedtoperformlittletonoadditionalmaintenance.
IEA.CCBY4.0.
PAGE|10
Coalminemethane
TheIEA’sestimatesofcoalminemethane(CMM)emissionsarederivedfrommine-specificorregion-specificemissionsintensitiesforAustralia,thePeople’sRepublicofChina(hereafter“China”),IndiaandtheUnitedStates(whichcollectivelyaccountedforaround75%ofglobalcoalproductionin2022).EmissionintensitiesforcoalminesintheUnitedStatesarebasedonthelatestUSEnvironmentalProtectionAgency’s
GreenhouseGasReportingProgramand
USGreenhouseGasInventory.
EmissionintensitiesforcoalproductioninAustraliaarebasedonitslatest
NationalInventoryReports.
ThisissupplementedbydatasourcesthatprovideddisaggregatedCMMdataforChina
(Wangetal.,
2018;
Zhuetal.,2017
)andIndia
(SinghA.K.andSahuJ.N.,2018)
(IndiaMinistry
ofCoal,2018)
.
Themine-levelCMMestimatesgeneratedinthiswayareaggregated,verifiedandcalibratedagainstcountry-levelestimatestakenfromsatellitesandatmosphericreadings(e.g.
Shenetal.,2023;
Dengetal.,2022;
Milleretal.,2019
).Methaneemissionsarecalculatedseparatelyforthethreemaincoaltypesinthe
Global
EnergyandClimateModel
:steamcoal;cokingcoal;andlignite(see
Table3
forasummaryofintensities).Methaneemissionsfrompeatminingarelikelytoberelativelysmallandarenotincludedinthisanalysis.
Basedonthesedata,coalquality,minedepth,andregulatoryoversightareusedtoestimateCMMemissionintensitiesforminesinothercountriesforwhichtherearenoreliablemeasurement-basedestimates.TheWorldBank’sWorldwideGovernanceIndicatorsdatabase(2023)wasusedasthebasistoassessthegeneralstrengthofregulatoryoversightalongsidepoliciesrelatedtocoalminemethanetrackedintheIEA’s
PoliciesDatabase.
Theemissionsintensitiesalsoconsiderestimatesfromsatellite-detectedlargeemittersandbasin-levelemissionsforcoalproducingregions,basedondataprocessingby
Kayrros.
Thedepthandtype(surfaceorunderground)ofindividualminesinoperationaroundtheworld,aswellastheassociatedcoalresource(thermalormetallurgical)andmethanegascontent,isbasedonthe
GEMGlobalCoalMine
Tracker
andthe
CRUdatabase
.Deepercoalseamstendtocontainmoremethanethanshallowerseams,whilecoalofhigherrank(e.g.anthracite)hashighermethanecontentthancoaloflowerrank(e.g.lignite).Intheabsenceofanymitigationmeasures,methaneemissionstotheatmospherewillthereforetendtobehigherforundergroundminesthanforsurfacemines.Minesthathavebothsurfaceandundergroundoperationsareclassifiedasunderground.Minesthatproduceboththermalormetallurgicalcoalareclassifiedonacountry-by-countryleveltomatchIEAcountry-leveldataoncoalproduction.
Methaneemissionestimates
GlobalMethaneTracker2023
Documentation
IEA.CCBY4.0.
PAGE|11
Table3.Emissionsintensitiesofmajorcoalproducers(kgCH4/tonneofcoalequivalent)
Region
Steamcoal
Cokingcoal
Lignite
Australia
3.7
5.6
0.4
China
5.0
10.3
-
India
4.3
12.8
0.4
Indonesia
3.1
6.2
-
Russia
8.8
18.0
0.9
SouthAfrica
8.1
15.7
-
UnitedStates
3.2
14.2
0.3
Note:Cokingcoalisthesameasmetallurgicalcoal.Intensitiesreflectaverageminecharacteristicsineachregion(minedepth,coalquality,regulatoryoversight,includingavailableprovinceorstate-levelinformation).
ResultingestimatesofglobalCMMemissionsamounttojustunder40Mt(for2023),withintherangeof
othermodelling
efforts.Methaneintensitiesforcokingcoalaregenerallyhigherbecauseproductioncomesfromdeepermineswithcoaldepositsofhigherrank.DifferencesbetweeninputsourcesandIEAestimatescanresultfromauxiliarydata(e.g.satellite-basedmeasurements)oractivitydata.Forexample,theIEAestimateforAustralianCMMemissionsisabout1.7Mt(for2023),abovetheofficialsubmissiontotheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)of1.0Mt(for2020),thisdifferenceismostlydrivenbyauxiliarydata,includingdatafromstudiesindicatinghigherfossilemissionsbasedon
satelliteinversions.
Intensitiesvarysignificantlyaccordingtominecharacteristicswithineachcountry(e.g.Australia’scokingcoalmethaneintensityisestimatedtoberelativelysmallasmostofitsproductioncomesfromlow-depthmineswithlowermethanecontent).
Emissionsfromabandonedminesarenotincludedinourestimatesasrelatedmeasurementstudiescoveralimitednumberoffacilitiesandregions.Likewise,thereislimiteddataavailableonclosedmines(e.g.yearofclosure,conditionofthemine,areacovered).Thesesourcescouldrepresentanimportantsharesofoverallmethaneemissionsfromcoaloperations.Forexample,theUnitedStates
EnvironmentalProtectionAgency
indicatesthatabandonedminesareresponsibleformorethan10%ofCMMintheUnitedStates.Referencesandsuggestionsregardingthistopicarewelcomeasthiscouldbeanareaoffuturedevelopment.
Emissionsfromfuelcombustion(enduse)
Methaneemissionsareassociatedwithfueluse,eitherduetoincompletecombustionorasfugitiveemissions.Methanecanleakfromstoragevessels,pipelinesorenduseappliances(e.g.stovetops).Itcanalsoescapewithoutcombustionfrommobileapplications(e.g.naturalgasfuelledvehicles)orstationaryapplications(e.g.powergenerators).
Methaneemissionestimates
GlobalMethaneTracker2023
Documentation
IEA.CCBY4.0.
PAGE|12
Weestimatethataround10Mtofmethaneemissionscomesduringtheincompletecombustionoftraditionaluseofbiomassforcookingorheatinginemergingmarketanddevelopingeconomies.Withregardstofossilfuels,weestimatethatabout3Mt(2%ofenergy-relatedmethaneemissions)comesfromtheenduseofcoal,oilproductsandnaturalgas.ThisestimateisbasedontheemissionsfactorspublishedbytheIntergovernmentalPanelonClimateChange(IPCC)forenergyconsumptioninhomes,industriesandinthetransportsector.
EstimatesformethaneemissionsfromtheuseoffuelsinstationaryandmobileapplicationsarefromtheIEA
GreenhouseGasEmissionsfromEnergy
forthelatestyearavailableforeachregion.TheTier1methodologyfromthe2006IPCCGuidelinesforGHGinventorieshavebeenadoptedforthepurposeofestimatingthenon-CO2emissionsfromfuelcombustion.UnlikeCO2,thenon-CO2greenhousegasemissionsfromfuelcombustionarestronglydependentonthetechnologyused.Sincethesetoftechnologies,appliedineachsectorvaryconsiderably,theguidelinesdonotprovidedefaultemissionfactorsforthesegasesonthebasisoffuelsonly.Sector-specificTier1defaultemissionfactorscanprovideareasonableestimatefortheseemissions.
Somemeasurementcampaignshavesuggestedthattheseemissionsfactorscouldsignificantlyunderestimateactualemissionsacrossdifferentend-useenvironments,includinginindustries(Zhouetal.,2019),cities(Sargentetal.,2021)andhouseholds(Lebeletal.,2022).Emissionlevelsmightalsohavechangedinrecentyears.Theseareareaswithveryhighlevelsofuncertaintyandourestimateswillcontinuetobeupdatedastheevidencebasegrows.
Forestimatingtheemissionscorrespondingtostationarycombustion,thedefaultTier1non-CO2emissionfactorsprovidedinthe2006IPCCguidelinesassumeeffectivecombustioninhightemperature.TheemissionfactorsprovidedforCH4arebasedonthe1996IPCCGuidelinesandhavebeenestablishedbyalargegroupofinventoryexperts.However,duetotheabsenceofsufficientmeasurementsandsincetheconceptofconservationofcarbondoesnotapplyinthecaseofnon-CO2gases,theuncertaintyrangeassociatedwiththeseestimatesaresetatafactorofthree.
Similarlyformobilecombustion,thenon-CO2emissionfactorsaremoredifficulttoestimateaccuratelythanthoseforCO2,astheywilldependonvehicletechnology,fuelandoperatingcharacteristics,mainlythecombustionandemissioncontrolsystemofthevehicles.Thus,defaultfuel-basedemissionfactorsarehighlyuncertain.However,theTier1methoddoesallowusingfuel-basedemissionfactorsifitisnotpossibletoestimatefuelconsumptionbyvehicletype.
Formoredetailsontheunderlyingmethodologyandassumptionspleaserefertothe
IEAGHGemis
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國聯(lián)通江西分公司春季校園招聘152人高頻重點提升(共500題)附帶答案詳解
- 2025中國移動通信集團設(shè)計院限公司春季校園招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國石油集團石油管工程技術(shù)研究院高校畢業(yè)生招聘14人高頻重點提升(共500題)附帶答案詳解
- 2025中國建筑土木建設(shè)限公司招聘443人高頻重點提升(共500題)附帶答案詳解
- 2025中交集團暨中國交建總部員工招聘1人高頻重點提升(共500題)附帶答案詳解
- 2025下半年重慶榮昌區(qū)事業(yè)單位歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年浙江舟山市屬事業(yè)單位招聘34人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年中國南水北調(diào)集團東線限公司招聘3人高頻重點提升(共500題)附帶答案詳解
- 2025上海電子信息職業(yè)技術(shù)學(xué)院事業(yè)單位招聘12人高頻重點提升(共500題)附帶答案詳解
- 2025上海市規(guī)劃和國土資源管理局所屬事業(yè)單位招聘20人歷年高頻重點提升(共500題)附帶答案詳解
- 展廳展板安裝方案范本
- 觀賞魚產(chǎn)業(yè)實施方案
- 辦公樓裝修工程招標(biāo)文件
- 駕駛員資格申請表
- 【自動駕駛技術(shù)發(fā)展文獻(xiàn)綜述4500字(論文)】
- 《孟子》精讀學(xué)習(xí)通章節(jié)答案期末考試題庫2023年
- –-重酒石酸去甲腎上腺素的合成
- 超深基坑工程施工關(guān)鍵技術(shù)
- 《基于課程標(biāo)準(zhǔn)的學(xué)歷案》讀書心得課件
- 中西醫(yī)結(jié)合-慢性胃炎-課件
- 2023學(xué)年完整公開課版法布爾簡介
評論
0/150
提交評論