2024年全球甲烷追蹤器_第1頁
2024年全球甲烷追蹤器_第2頁
2024年全球甲烷追蹤器_第3頁
2024年全球甲烷追蹤器_第4頁
2024年全球甲烷追蹤器_第5頁
已閱讀5頁,還剩71頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

ea

GlobalMethaneTracker

DOCUMENTATION

2024VERSION

Lastupdated:19March2024

INTERNATIONALENERGY

AGENCY

TheIEAexaminesthe

fullspectrum

ofenergyissues

includingoil,gasand

coalsupplyand

demand,renewable

energytechnologies,

electricitymarkets,

energyefficiency,

accesstoenergy,

demandside

managementand

muchmore.Through

itswork,theIEA

advocatespoliciesthat

willenhancethe

reliability,affordability

andsustainabilityof

energyinits

31membercountries,

13association

countriesandbeyond.

Thispublicationandany

mapincludedhereinare

withoutprejudicetothe

statusoforsovereigntyover

anyterritory,tothe

delimitationofinternational

frontiersandboundariesand

tothenameofanyterritory,

cityorarea.

IEAmember

countries:

Australia

Austria

Belgium

Canada

CzechRepublic

Denmark

Estonia

Finland

France

Germany

Greece

Hungary

Ireland

Italy

Japan

Korea

Lithuania

Luxembourg

Mexico

Netherlands

NewZealand

Norway

Poland

Portugal

SlovakRepublic

Spain

Sweden

Switzerland

RepublicofTürkiye

UnitedKingdom

UnitedStates

TheEuropean

Commissionalso

participatesinthe

workoftheIEA

IEAassociation

countries:

Argentina

Brazil

China

Egypt

India

Indonesia

Kenya

Morocco

Senegal

Singapore

SouthAfrica

Thailand

Ukraine

Source:IEA.

InternationalEnergyAgency

Website:

Iea

Contents

GlobalMethaneTracker2024

Documentation

IEA.CCBY4.0.

PAGE|3

Contents

Background 4

Methaneemissionestimates 5

Upstreamanddownstreamoilandgas 5

Incompletecombustionofflares 9

Coalminemethane 10

Emissionsfromfuelcombustion(enduse) 11

Wasteandagriculture 13

Methaneabatementestimates 14

Marginalabatementcostcurvesforoilandgas 14

Well-headpricesusedinnetpresentvaluecalculation 19

Marginalabatementcostcurvesforcoalminemethane 20

Energypricesusedinnetpresentvaluecalculation 24

Projectionsofenergy-relatedmethaneemissionsandassessedtemperaturerises.26

Glossary 28

Oilandgasabatementtechnologies 28

Coalminemethaneabatementtechnologies 30

Policyoptions 33

Policyexplorer 34

References 38

Background

GlobalMethaneTracker2023

Documentation

IEA.CCBY4.0.

PAGE|4

Background

TheIEA’sestimatesofmethaneemissionsareproducedwithintheframeworkoftheIEA’s

GlobalEnergyandClimateModel

(GEC).Since1993,theInternationalEnergyAgency(IEA)hasprovidedmedium-tolong-termenergyprojectionsusingthislarge-scalesimulationmodeldesignedtoreplicatehowenergymarketsfunctionandgeneratedetailedsector-by-sectorandregion-by-regionprojectionsfortheWorldEnergyOutlook(WEO)scenarios.Updatedeveryyear,themodelconsistsofthreemainmodules:finalenergyconsumption(coveringresidential,services,agriculture,industry,transportandnon-energyuse);energytransformationincludingpowergenerationandheat,refineryandothertransformation(suchashydrogenproduction);andenergysupply(oil,naturalgasandcoal).Outputsfromthemodelincludeenergyflowsbyfuel,investmentneedsandcosts,greenhousegasemissionsandend-userprices.

TheGECisaverydata-intensivemodelcoveringthewholeglobalenergysystem.Muchofthedataonenergysupply,transformationanddemand,aswellasenergypricesisobtainedfromtheIEA’sowndatabasesofenergyandeconomicstatistics

(/statistics

)andthroughcollaborationwithotherinstitutions.Forexample,fortheNetZeroby2050:ARoadmapfortheGlobalEnergySectorpublication,resultsfromboththeWEOand

EnergyTechnologyPerspectives

(ETP)

modelshavebeencombinedwiththosefromtheInternationalInstituteforAppliedSystemsAnalysis(IIASA)–inparticulartheGreenhouseGas-AirPollutionInteractionsandSynergies(GAINS)model–toevaluateairpollutantemissionsandresultanthealthimpacts.And,forthefirsttime,resultswerecombinedwiththeIIASA’sGlobalBiosphereManagementModel(GLOBIOM)toprovidedataonlanduseandnetemissionsimpactsofbioenergydemand.TheGECalsodrawsdatafromawiderangeofexternalsourceswhichareindicatedintherelevantsectionsofthe

GECdocumentation.

ThecurrentversionofGECcoversenergydevelopmentsupto2050in29regions.DependingonthespecificmoduleoftheWEM,individualcountriesarealsomodelled:16indemand;113inoilandnaturalgassupply;and32incoalsupply(seeAnnexAoftheGECdocumentation).

Methaneemissionestimates

GlobalMethaneTracker2023

Documentation

IEA.CCBY4.0.

PAGE|5

Methaneemissionestimates

TheGlobalMethaneTrackercoversallsourcesofmethanefromhumanactivity.Fortheenergysector,theseareIEAestimatesformethaneemissionsfromthesupplyoruseoffossilfuels(coal,oilandnaturalgas)andfromtheuseofbioenergy(suchassolidbioenergy,liquidbiofuelsandbiogases).Fornon-energysectors–waste,agricultureandothersources–referencevaluesbasedonpubliclyavailabledatasourcesareprovidedtoenableafullerpictureofmethanesources.

Upstreamanddownstreamoilandgas

Ourapproachtoestimatingmethaneemissionsfromglobaloilandgasoperationsreliesongeneratingcountry-specificandproductiontype-specificemissionintensitiesthatareappliedtoproductionandconsumptiondataonacountry-by-countrybasis.OurstartingpointistogenerateemissionintensitiesforupstreamanddownstreamoilandgasintheUnitedStates(Table1).TheUSGreenhouseGasInventory(USEPA,2023)isusedalongwithawiderangeofotherpublicly-reported,credibledatasources.Thehydrocarbon-,segment-andproduction-specificemissionintensitiesarethenfurthersegregatedintofugitive,ventedandincompleteflaringemissionstogiveatotalof19separateemissionintensities.

Table1.CategoriesofemissionsourcesandemissionsintensitiesintheUnited

States

Hydrocarbon

SegmentProductiontypeEmissionstype

Intensity

(massmethane/massoilorgas)

Oil

UpstreamOnshoreconventionalVented

0.36%

Oil

UpstreamOnshoreconventionalFugitive

0.09%

Oil

UpstreamOffshoreVented

0.36%

Oil

UpstreamOffshoreFugitive

0.09%

Oil

UpstreamUnconventionaloilVented

0.72%

Oil

UpstreamUnconventionaloilFugitive

0.18%

Oil

DownstreamVented

0.004%

Oil

DownstreamFugitive

0.001%

Oil

OnshoreconventionalIncomplete-flare

0.06%

Oil

OffshoreIncomplete-flare

0.01%

Oil

UnconventionalIncomplete-flare

0.04%

Naturalgas

UpstreamOnshoreconventionalVented

0.29%

Naturalgas

UpstreamOnshoreconventionalFugitive

0.11%

Naturalgas

UpstreamOffshoreVented

0.29%

IEA.CCBY

PAGE|6

4.0.

Hydrocarbon

Segment

Productiontype

Emissionstype

Intensity

(massmethane/massoilorgas)

Naturalgas

Upstream

Offshore

Fugitive

0.11%

NaturalgasUpstreamUnconventionalgasVented0.43%

Naturalgas

UpstreamUnconventionalgas

Fugitive

0.17%

Naturalgas

Downstream

Vented

0.15%

Naturalgas

Downstream

Fugitive

0.10%

TheUSemissionsintensitiesarescaledtoprovideemissionintensitiesinallothercountries.Thisscalingisbaseduponarangeofauxiliarycountry-specificdata.Fortheupstreamemissionintensities,thescalingisbasedontheageofinfrastructure,typesofoperatorwithineachcountry(namelyinternationaloilcompanies,independentcompaniesornationaloilcompanies)andaverageflaringintensity(flaringvolumesdividedbyoilproductionvolumes).Fordownstreamemissionintensities,country-specificscalingfactorswerebasedupontheextentofoilandgaspipelinenetworksandoilrefiningcapacityandutilisation.

Figure1

Methodologicalapproachforestimatingmethaneemissionsfromoilandgasoperations

IEA.CCBY4.0.

Thestrengthofregulationandoversight,incorporatinggovernmenteffectiveness,regulatoryqualityandtheruleoflawasgivenbytheWorldwideGovernanceIndicatorscompiledbytheWorldBank(2023),affectsthescalingofallintensities.Someadjustmentsweremadetothescalingfactorsinalimitednumberofcountriestotakeintoaccountotherdatathatweremadeavailable(wherethiswasconsideredtobesufficientlyrobust),suchascomprehensivemeasurementstudies.Thisincludesdataonsatellite-detectedlargeemittersand“basin-levelinversions”,whichusesatellitereadingstoassessmethaneemissionsacrossawideroilandgasproductionregion,basedondataprocessingby

IEA.CCBY4.0.

PAGE|7

Kayrros,anearthobservationfirm(seeBox1.6).Italsoincludesspecificpolicyeffortstocontrolmethaneemissionsfromtheoilandgassectors,astrackedinthe

IEAPoliciesDatabase.

Table2providestheresultantscalingfactorsinthetopoilandgasproducers(thecountrieslistedcover90%ofglobaloilandgasproduction).ThesescalingfactorsaredirectlyusedtomodifytheemissionsintensitiesinTable1.Forexample,theventedemissionintensityofonshoreconventionalgasproductionintheRussianFederation(hereafter“Russia”)istakenas0.29%×1.7=0.49%.Theseintensitiesarefinallyappliedtotheproduction(forupstreamemissions)orconsumption(fordownstreamemissions)ofoilandgaswithineachcountry.

Table2.ScalingfactorsappliedtoemissionintensitiesintheUnitedStates

Country

Oil&gas

production

in2023

OilGas

mtoeUpstreamDownstreamUpstream

Downstream

UnitedStates

17241.01.01.0

1.0

Russia

10782.31.31.7

1.1

SaudiArabia

6430.80.40.6

0.4

Canada

4521.00.51.0

0.5

Iran

4253.10.91.4

0.9

China

4091.50.91.1

0.8

UnitedArabEmirates

2491.40.71.2

0.6

Iraq

2311.40.50.8

0.5

Qatar

2271.10.61.0

0.6

Norway

2010.00.00.0

0.0

Brazil

1961.71.31.7

1.3

Kuwait

1631.40.71.1

0.7

Algeria

1584.71.42.1

1.4

Australia

1520.80.50.6

0.5

Mexico

1331.60.91.1

0.8

Kazakhstan

1162.81.42.5

1.4

Nigeria

1063.81.82.4

1.8

Oman

911.60.71.0

0.7

Malaysia

902.21.11.5

1.1

Indonesia

853.21.52.1

1.5

Egypt

852.41.01.3

1.0

Turkmenistan

7715.84.56.6

4.5

Argentina

752.51.11.8

1.1

Libya

723.71.01.7

1.0

India

673.21.62.1

1.5

Methaneemissionestimates

GlobalMethaneTracker2023

Documentation

IEA.CCBY4.0.

PAGE|8

Box1Integratingemissionsestimatesfromsatellites

TheGlobalMethaneTrackerintegratesresultsfromallpublicly-reported,crediblesourceswheredatahasbecomeavailable.Thisincludesemissionsdetectedbysatellites.Changesintheatmosphericconcentrationofmethanecanbeusedtoestimatetherateofemissionsfromasourcethatwouldhavecausedsuchachange.Thisisdonebasedondataprocessingby

Kayrros,

anearthobservationfirm,toconvertreadingsofconcentrationstoidentifylargesourcesofemissionsfromoilandgasoperations.Reportedemissionsencompassmethanesourcesabove5tonnesperhour.

OilandgasemissionsdetectedbysatellitesarereportedasaseparateitemwithintheMethaneTracker.Theseestimatesarebasedonaconservativescalingupofemissioneventsdirectlydetectedtotakeintoaccounttheperiodwithintheyearwhenobservationscouldbemade.Thisiscarriedoutforallregionswhereobservationswerepossibleforatleast20daysintheyear.

Theincreasingamountofdataandinformationfromsatelliteswillcontinuetoimproveglobalunderstandingofmethaneemissionslevelsandtheopportunitiestoreducethem.However,satellitesdohavesomelimitations:

.Existingsatellitesstruggletoprovidemeasurementsoverequatorialregions,northernareas,mountainranges,snowyorice-coveredregionsorforoffshoreoperations.Thismeansthattherearealargenumberofmajorproductionareaswhereemissionscannotbeobserved.

.Existingsatellitesshouldbeabletoprovidemethanereadingsgloballyonadailybasisbutthisisnotalwayspossiblebecauseofcloudcoverandotherweatherconditions.During2023therewerearound70countrieswheremethaneemissionsfromoilandgasoperationscouldbedetectedforatleast20days.Largeemissioneventswereobservedin20ofthesecountriesin2023.CoveragetendstobebestintheMiddleEast,AustraliaandpartofCentralAsia,whereadirectmeasurementcouldbemadeevery3-5days.Ontheremainingdays,cloudcoverageorotherinterferencepreventedmeasurementoperations.

.Theprocessofusingchangesintheatmosphericconcentrationofmethanetoestimateemissionsfromaparticularsourcecanrelyonalargelevelofauxiliarydataandbesubjecttoahighdegreeofuncertainty.

ThesatellitereadingsincludedintheGlobalMethaneTrackercurrentlyprovidedataonlyforlargeemittingsources.Thisis,ofcourse,subjecttoahighdegreeofuncertainty,butensuresthatcountry-by-countyestimatesprovideacomprehensivepictureofallmethaneemissionssources.Asadditionaldatabecomesavailablefrommeasurementcampaigns–whetherrecordedfromgroundoraerialprocessesorbysatellites–thesewillbeincorporatedintotheGlobalMethaneTrackerandestimatesadjustedaccordingly.

IEA.CCBY4.0.

PAGE|9

Incompletecombustionofflares

Ourapproachtoestimatingmethaneemissionsfromflaringreliesongeneratingcountry-specificandproductiontype-specificcombustionefficienciesthatareappliedtoflaringdataonacountry-by-countrybasis.GlobalestimatesofflaredvolumesofnaturalgasarebasedonreporteddatafromtheWorldBank’sGlobalGasFlaringReductionPartnership.ThesedataaretakenfromtheNationalOceanicandAtmosphericAdministration(NOAA)andthePayneInstitute(WorldBank,2023).

Combustionefficienciescanreduceasaresultoflowerproductionrates,highandvariablewinds,andpoormaintenanceresultingfromlackofregulatorypolicy,enforcementorcompanypolicy(Johnson,2001;Kostiuk,2004).Weestimatecombustionbaseduponarangeofauxiliarycountry-specificdata:

.Oilproductiontype(unconventionalonshore,conventionalonshoreandoffshore),companytypeandproductionstart-upyear,basedonRystadEnergyUCubedata.CompanytypeisgroupedinMajors(ExxonMobil,Chevron,BP,RoyalDutchShell,EniSpA,TotalEnergies,andConocoPhillips),NationalOilCompanies(NOCs)andOther(e.g.Independent,PrivateEquity).MaintenancelevelstoimproveflaringcombustionefficiencieswereappliedseparatelybycompanytypeassumingthatmorescrutinyfrominvestorsandthepublicisplacedontheMajorsascomparedtoNOCsorOther.

.FlaringdesignstandardsAPI521andAPI537wereconsideredgaugeflarestacksizes,assumingbest-casedesignandoptimalflareparametersduringearlyproductiontime(API,2014;API,2017).

.TheimpactofwindspeedwasincorporatedusingNASA’sPredictionofWorldwideEnergyResources(POWER)MeteorologyDataAccessViewer(NASA,2021).Onshorewindspeedswereassessedat10mandoffshorewindspeedsat50mtoreflectclosestheightofflarestacksinactualfacilitydesign.Windspeedvariabilityanditsimpactoncombustionefficiencywasincorporatedcorrespondingtothelocationofproduction.

.TheWorldBank’sWorldwideGovernanceIndicatorsdatabase(2023)wasusedasthebasistoassessthegeneralstrengthofregulatoryoversight.

Adjustmentsaremadetoconsiderdataonsatellite-detectedlargeemittersandspecificpolicyeffortstocontrolmethaneemissionsfromtheoilandgassectors,astrackedintheIEAPoliciesDatabase.Countrieswithstrongerflaringregulationandstrongregulatoryoversightarecalibratedassumingcompaniesweremandatedtoquicklyinspectandrepairanymalfunctioningorpoorperformingflaresites.Countrieswithweakflaringregulationandlowlevelsofoversightareassumedtoperformlittletonoadditionalmaintenance.

IEA.CCBY4.0.

PAGE|10

Coalminemethane

TheIEA’sestimatesofcoalminemethane(CMM)emissionsarederivedfrommine-specificorregion-specificemissionsintensitiesforAustralia,thePeople’sRepublicofChina(hereafter“China”),IndiaandtheUnitedStates(whichcollectivelyaccountedforaround75%ofglobalcoalproductionin2022).EmissionintensitiesforcoalminesintheUnitedStatesarebasedonthelatestUSEnvironmentalProtectionAgency’s

GreenhouseGasReportingProgramand

USGreenhouseGasInventory.

EmissionintensitiesforcoalproductioninAustraliaarebasedonitslatest

NationalInventoryReports.

ThisissupplementedbydatasourcesthatprovideddisaggregatedCMMdataforChina

(Wangetal.,

2018;

Zhuetal.,2017

)andIndia

(SinghA.K.andSahuJ.N.,2018)

(IndiaMinistry

ofCoal,2018)

.

Themine-levelCMMestimatesgeneratedinthiswayareaggregated,verifiedandcalibratedagainstcountry-levelestimatestakenfromsatellitesandatmosphericreadings(e.g.

Shenetal.,2023;

Dengetal.,2022;

Milleretal.,2019

).Methaneemissionsarecalculatedseparatelyforthethreemaincoaltypesinthe

Global

EnergyandClimateModel

:steamcoal;cokingcoal;andlignite(see

Table3

forasummaryofintensities).Methaneemissionsfrompeatminingarelikelytoberelativelysmallandarenotincludedinthisanalysis.

Basedonthesedata,coalquality,minedepth,andregulatoryoversightareusedtoestimateCMMemissionintensitiesforminesinothercountriesforwhichtherearenoreliablemeasurement-basedestimates.TheWorldBank’sWorldwideGovernanceIndicatorsdatabase(2023)wasusedasthebasistoassessthegeneralstrengthofregulatoryoversightalongsidepoliciesrelatedtocoalminemethanetrackedintheIEA’s

PoliciesDatabase.

Theemissionsintensitiesalsoconsiderestimatesfromsatellite-detectedlargeemittersandbasin-levelemissionsforcoalproducingregions,basedondataprocessingby

Kayrros.

Thedepthandtype(surfaceorunderground)ofindividualminesinoperationaroundtheworld,aswellastheassociatedcoalresource(thermalormetallurgical)andmethanegascontent,isbasedonthe

GEMGlobalCoalMine

Tracker

andthe

CRUdatabase

.Deepercoalseamstendtocontainmoremethanethanshallowerseams,whilecoalofhigherrank(e.g.anthracite)hashighermethanecontentthancoaloflowerrank(e.g.lignite).Intheabsenceofanymitigationmeasures,methaneemissionstotheatmospherewillthereforetendtobehigherforundergroundminesthanforsurfacemines.Minesthathavebothsurfaceandundergroundoperationsareclassifiedasunderground.Minesthatproduceboththermalormetallurgicalcoalareclassifiedonacountry-by-countryleveltomatchIEAcountry-leveldataoncoalproduction.

Methaneemissionestimates

GlobalMethaneTracker2023

Documentation

IEA.CCBY4.0.

PAGE|11

Table3.Emissionsintensitiesofmajorcoalproducers(kgCH4/tonneofcoalequivalent)

Region

Steamcoal

Cokingcoal

Lignite

Australia

3.7

5.6

0.4

China

5.0

10.3

-

India

4.3

12.8

0.4

Indonesia

3.1

6.2

-

Russia

8.8

18.0

0.9

SouthAfrica

8.1

15.7

-

UnitedStates

3.2

14.2

0.3

Note:Cokingcoalisthesameasmetallurgicalcoal.Intensitiesreflectaverageminecharacteristicsineachregion(minedepth,coalquality,regulatoryoversight,includingavailableprovinceorstate-levelinformation).

ResultingestimatesofglobalCMMemissionsamounttojustunder40Mt(for2023),withintherangeof

othermodelling

efforts.Methaneintensitiesforcokingcoalaregenerallyhigherbecauseproductioncomesfromdeepermineswithcoaldepositsofhigherrank.DifferencesbetweeninputsourcesandIEAestimatescanresultfromauxiliarydata(e.g.satellite-basedmeasurements)oractivitydata.Forexample,theIEAestimateforAustralianCMMemissionsisabout1.7Mt(for2023),abovetheofficialsubmissiontotheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)of1.0Mt(for2020),thisdifferenceismostlydrivenbyauxiliarydata,includingdatafromstudiesindicatinghigherfossilemissionsbasedon

satelliteinversions.

Intensitiesvarysignificantlyaccordingtominecharacteristicswithineachcountry(e.g.Australia’scokingcoalmethaneintensityisestimatedtoberelativelysmallasmostofitsproductioncomesfromlow-depthmineswithlowermethanecontent).

Emissionsfromabandonedminesarenotincludedinourestimatesasrelatedmeasurementstudiescoveralimitednumberoffacilitiesandregions.Likewise,thereislimiteddataavailableonclosedmines(e.g.yearofclosure,conditionofthemine,areacovered).Thesesourcescouldrepresentanimportantsharesofoverallmethaneemissionsfromcoaloperations.Forexample,theUnitedStates

EnvironmentalProtectionAgency

indicatesthatabandonedminesareresponsibleformorethan10%ofCMMintheUnitedStates.Referencesandsuggestionsregardingthistopicarewelcomeasthiscouldbeanareaoffuturedevelopment.

Emissionsfromfuelcombustion(enduse)

Methaneemissionsareassociatedwithfueluse,eitherduetoincompletecombustionorasfugitiveemissions.Methanecanleakfromstoragevessels,pipelinesorenduseappliances(e.g.stovetops).Itcanalsoescapewithoutcombustionfrommobileapplications(e.g.naturalgasfuelledvehicles)orstationaryapplications(e.g.powergenerators).

Methaneemissionestimates

GlobalMethaneTracker2023

Documentation

IEA.CCBY4.0.

PAGE|12

Weestimatethataround10Mtofmethaneemissionscomesduringtheincompletecombustionoftraditionaluseofbiomassforcookingorheatinginemergingmarketanddevelopingeconomies.Withregardstofossilfuels,weestimatethatabout3Mt(2%ofenergy-relatedmethaneemissions)comesfromtheenduseofcoal,oilproductsandnaturalgas.ThisestimateisbasedontheemissionsfactorspublishedbytheIntergovernmentalPanelonClimateChange(IPCC)forenergyconsumptioninhomes,industriesandinthetransportsector.

EstimatesformethaneemissionsfromtheuseoffuelsinstationaryandmobileapplicationsarefromtheIEA

GreenhouseGasEmissionsfromEnergy

forthelatestyearavailableforeachregion.TheTier1methodologyfromthe2006IPCCGuidelinesforGHGinventorieshavebeenadoptedforthepurposeofestimatingthenon-CO2emissionsfromfuelcombustion.UnlikeCO2,thenon-CO2greenhousegasemissionsfromfuelcombustionarestronglydependentonthetechnologyused.Sincethesetoftechnologies,appliedineachsectorvaryconsiderably,theguidelinesdonotprovidedefaultemissionfactorsforthesegasesonthebasisoffuelsonly.Sector-specificTier1defaultemissionfactorscanprovideareasonableestimatefortheseemissions.

Somemeasurementcampaignshavesuggestedthattheseemissionsfactorscouldsignificantlyunderestimateactualemissionsacrossdifferentend-useenvironments,includinginindustries(Zhouetal.,2019),cities(Sargentetal.,2021)andhouseholds(Lebeletal.,2022).Emissionlevelsmightalsohavechangedinrecentyears.Theseareareaswithveryhighlevelsofuncertaintyandourestimateswillcontinuetobeupdatedastheevidencebasegrows.

Forestimatingtheemissionscorrespondingtostationarycombustion,thedefaultTier1non-CO2emissionfactorsprovidedinthe2006IPCCguidelinesassumeeffectivecombustioninhightemperature.TheemissionfactorsprovidedforCH4arebasedonthe1996IPCCGuidelinesandhavebeenestablishedbyalargegroupofinventoryexperts.However,duetotheabsenceofsufficientmeasurementsandsincetheconceptofconservationofcarbondoesnotapplyinthecaseofnon-CO2gases,theuncertaintyrangeassociatedwiththeseestimatesaresetatafactorofthree.

Similarlyformobilecombustion,thenon-CO2emissionfactorsaremoredifficulttoestimateaccuratelythanthoseforCO2,astheywilldependonvehicletechnology,fuelandoperatingcharacteristics,mainlythecombustionandemissioncontrolsystemofthevehicles.Thus,defaultfuel-basedemissionfactorsarehighlyuncertain.However,theTier1methoddoesallowusingfuel-basedemissionfactorsifitisnotpossibletoestimatefuelconsumptionbyvehicletype.

Formoredetailsontheunderlyingmethodologyandassumptionspleaserefertothe

IEAGHGemis

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論