2024屆福建省南平三中學(xué)中考一模數(shù)學(xué)試題含解析_第1頁
2024屆福建省南平三中學(xué)中考一模數(shù)學(xué)試題含解析_第2頁
2024屆福建省南平三中學(xué)中考一模數(shù)學(xué)試題含解析_第3頁
2024屆福建省南平三中學(xué)中考一模數(shù)學(xué)試題含解析_第4頁
2024屆福建省南平三中學(xué)中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建省南平三中學(xué)中考一模數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點P是∠AOB內(nèi)任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.2.下列四個幾何體,正視圖與其它三個不同的幾何體是()A. B.C. D.3.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個圓錐的側(cè)面,則這個圓錐的高為()cm.A. B. C. D.4.已知方程x2﹣x﹣2=0的兩個實數(shù)根為x1、x2,則代數(shù)式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣15.我國古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點后第七位,這一結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.6.正方形ABCD在直角坐標(biāo)系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉(zhuǎn)180°后,C點的坐標(biāo)是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)7.據(jù)國家統(tǒng)計局2018年1月18日公布,2017年我國GDP總量為827122億元,首次登上80萬億元的門檻,數(shù)據(jù)827122億元用科學(xué)記數(shù)法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10148.估計﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間9.估計﹣÷2的運算結(jié)果在哪兩個整數(shù)之間()A.0和1 B.1和2 C.2和3 D.3和410.花園甜瓜是樂陵的特色時令水果.甜瓜一上市,水果店的小李就用3000元購進了一批甜瓜,前兩天以高于進價40%的價格共賣出150kg,第三天她發(fā)現(xiàn)市場上甜瓜數(shù)量陡增,而自己的甜瓜賣相已不大好,于是果斷地將剩余甜瓜以低于進價20%的價格全部售出,前后一共獲利750元,則小李所進甜瓜的質(zhì)量為()kg.A.180 B.200 C.240 D.300二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.12.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____13.若a2+3=2b,則a3﹣2ab+3a=_____.14.如圖,某數(shù)學(xué)興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.15.從﹣2,﹣1,1,2四個數(shù)中,隨機抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是_____.16.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內(nèi)部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標(biāo)系xOy中,點P在坐標(biāo)平面內(nèi),且點P的橫坐標(biāo)比縱坐標(biāo)大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標(biāo)是_____.17.拋物線(為非零實數(shù))的頂點坐標(biāo)為_____________.三、解答題(共7小題,滿分69分)18.(10分)“校園安全”受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為度;(2)請補全條形統(tǒng)計圖;(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).19.(5分)如圖,直角△ABC內(nèi)接于⊙O,點D是直角△ABC斜邊AB上的一點,過點D作AB的垂線交AC于E,過點C作∠ECP=∠AED,CP交DE的延長線于點P,連結(jié)PO交⊙O于點F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長.20.(8分)如圖所示,點C為線段OB的中點,D為線段OA上一點.連結(jié)AC、BD交于點P.(問題引入)(1)如圖1,若點P為AC的中點,求的值.溫馨提示:過點C作CE∥AO交BD于點E.(探索研究)(2)如圖2,點D為OA上的任意一點(不與點A、O重合),求證:.(問題解決)(3)如圖2,若AO=BO,AO⊥BO,,求tan∠BPC的值.21.(10分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當(dāng)∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.22.(10分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當(dāng)時,請猜想的值(請直接寫出結(jié)論).23.(12分)已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是;以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是.24.(14分)“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.求與之間的函數(shù)關(guān)系式;如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:作點P關(guān)于OA對稱的點P3,作點P關(guān)于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最小.由線段垂直平分線性質(zhì)可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質(zhì);3.軸對稱作圖.2、C【解析】

根據(jù)幾何體的三視圖畫法先畫出物體的正視圖再解答.【詳解】解:A、B、D三個幾何體的主視圖是由左上一個正方形、下方兩個正方形構(gòu)成的,而C選項的幾何體是由上方2個正方形、下方2個正方形構(gòu)成的,故選:C.【點睛】此題重點考查學(xué)生對幾何體三視圖的理解,掌握幾何體的主視圖是解題的關(guān)鍵.3、B【解析】分析:直接利用圓錐的性質(zhì)求出圓錐的半徑,進而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長為:24cm,設(shè)圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個圓錐的高為:(cm).故選B.點睛:此題主要考查了圓錐的計算,正確得出圓錐的半徑是解題關(guān)鍵.4、D【解析】分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關(guān)系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關(guān)系式:,.5、C【解析】

根據(jù)題意畫出圖形,結(jié)合圖形求出單位圓的內(nèi)接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點睛】本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應(yīng)用問題,關(guān)鍵是根據(jù)正三角形的面積,正n邊形的性質(zhì)解答.6、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉(zhuǎn)180°后,C點的對應(yīng)點與C一定關(guān)于A對稱,A是對稱點連線的中點,據(jù)此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉(zhuǎn)180°后C的對應(yīng)點設(shè)是C′,則AC′=AC=2,則OC′=3,故C′的坐標(biāo)是(3,0).故選B.考點:坐標(biāo)與圖形變化-旋轉(zhuǎn).7、B【解析】

由科學(xué)記數(shù)法的定義可得答案.【詳解】解:827122億即82712200000000,用科學(xué)記數(shù)法表示為8.27122×1013,故選B.【點睛】科學(xué)記數(shù)法表示數(shù)的標(biāo)準(zhǔn)形式為(<10且n為整數(shù)).8、B【解析】

根據(jù),可得答案.【詳解】解:∵,∴,∴∴﹣1的值在2和3之間.故選B.【點睛】本題考查了估算無理數(shù)的大小,先確定的大小,在確定答案的范圍.9、D【解析】

先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點睛】本題主要考查的是二次根式的混合運算,估算無理數(shù)的大小,利用夾逼法估算出的大小是解題的關(guān)鍵.10、B【解析】

根據(jù)題意去設(shè)所進烏梅的數(shù)量為,根據(jù)前后一共獲利元,列出方程,求出x值即可.【詳解】解:設(shè)小李所進甜瓜的數(shù)量為,根據(jù)題意得:,解得:,經(jīng)檢驗是原方程的解.答:小李所進甜瓜的數(shù)量為200kg.故選:B.【點睛】本題考查的是分式方程的應(yīng)用,解題關(guān)鍵在于對等量關(guān)系的理解,進而列出方程即可.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.12、【解析】

分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì)13、1【解析】

利用提公因式法將多項式分解為a(a2+3)-2ab,將a2+3=2b代入可求出其值.【詳解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案為1.【點睛】本題考查了因式分解的應(yīng)用,利用提公因式法將多項式分解是本題的關(guān)鍵.14、25【解析】試題解析:由題意15、【解析】

列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為=,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、(6,4)或(﹣4,﹣6)【解析】

設(shè)點P的橫坐標(biāo)為x,表示出縱坐標(biāo),然后列方程求出x,再求解即可.【詳解】解:設(shè)點P的橫坐標(biāo)為x,則點P的縱坐標(biāo)為x-2,由題意得,

當(dāng)點P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當(dāng)點P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).【點睛】本題主要考查了點的坐標(biāo),讀懂題目信息,理解“點角距離”的定義并列出方程是解題的關(guān)鍵.17、【解析】【分析】將拋物線的解析式由一般式化為頂點式,即可得到頂點坐標(biāo).【詳解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以拋物線的頂點坐標(biāo)為(-1,1-m),故答案為(-1,1-m).【點睛】本題考查了拋物線的頂點坐標(biāo),把拋物線的解析式轉(zhuǎn)化為頂點式是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)60,90;(2)見解析;(3)300人【解析】

(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據(jù)題意得:900×=300(人),則估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為300人.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關(guān)知識點.19、(1)證明見解析;(2)1.【解析】試題分析:(1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可;(2)延長PO交圓于G點,由切割線定理求出PG即可解決問題.試題解析:(1)如圖,連接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切線;(2)延長PO交圓于G點,∵PF×PG=PC考點:切線的判定;切割線定理.20、(1);(2)見解析;(3)【解析】

(1)過點C作CE∥OA交BD于點E,即可得△BCE∽△BOD,根據(jù)相似三角形的性質(zhì)可得,再證明△ECP≌△DAP,由此即可求得的值;(2)過點D作DF∥BO交AC于點F,即可得,,由點C為OB的中點可得BC=OC,即可證得;(3)由(2)可知=,設(shè)AD=t,則BO=AO=4t,OD=3t,根據(jù)勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,從而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【詳解】(1)如圖1,過點C作CE∥OA交BD于點E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如圖2,過點D作DF∥BO交AC于點F,則=,=.∵點C為OB的中點,∴BC=OC,∴=;(3)如圖2,∵=,由(2)可知==.設(shè)AD=t,則BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,則tan∠BPC=tan∠A==.【點睛】本題考查了相似三角形的判定與性質(zhì),準(zhǔn)確作出輔助線,構(gòu)造相似三角形是解決本題的關(guān)鍵,也是求解的難點.21、(1)證明見解析;(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質(zhì)得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應(yīng)角相等即可;(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形,根據(jù)∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切線.(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等邊三角形∴AE=EF,∵AE=AD∴EF=AD∴四邊形ADFE是平行四邊形∵AE=EF∴平行四邊形ADFE為菱形.點睛:本題考查了菱形的判定、全等三角形的判定與性質(zhì)及圓周角定理的知識,解題的關(guān)鍵是了解菱形的判定方法及全等三角形的判定方法,難度不大.22、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設(shè)AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設(shè)AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設(shè)AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設(shè)AM=x,則AF=2x,DN=x,DE=x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論