山東省青島39中重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
山東省青島39中重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
山東省青島39中重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
山東省青島39中重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
山東省青島39中重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省青島39中重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關(guān)于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′2.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°3.某校九年級(1)班學(xué)生畢業(yè)時,每個同學(xué)都將自己的相片向全班其他同學(xué)各送一張留作紀(jì)念,全班共送了1980張相片,如果全班有x名學(xué)生,根據(jù)題意,列出方程為A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19804.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a5.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點,連接AC、BC,則圖中陰影部分面積是()A. B.C. D.6.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.67.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠38.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等9.對于二次函數(shù),下列說法正確的是()A.當(dāng)x>0,y隨x的增大而增大B.當(dāng)x=2時,y有最大值-3C.圖像的頂點坐標(biāo)為(-2,-7)D.圖像與x軸有兩個交點10.如圖是一次數(shù)學(xué)活動課制作的一個轉(zhuǎn)盤,盤面被等分成四個扇形區(qū)域,并分別標(biāo)有數(shù)字6、7、8、1.若轉(zhuǎn)動轉(zhuǎn)盤一次,轉(zhuǎn)盤停止后(當(dāng)指針恰好指在分界線上時,不記,重轉(zhuǎn)),指針?biāo)竻^(qū)域的數(shù)字是奇數(shù)的概率為()A.12 B.14 C.111.甲隊修路120m與乙隊修路100m所用天數(shù)相同,已知甲隊比乙隊每天多修10m,設(shè)甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.12.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數(shù)為()A.54° B.64° C.74° D.26°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知正比例函數(shù)的圖像經(jīng)過點M(-2,1)、Ax1,y1、Bx2,y14.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.15.在矩形ABCD中,AB=6CM,E為直線CD上一點,連接AC,BE,若AC與BE交與點F,DE=2,則EF:BE=________。16.如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達(dá)B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達(dá)C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為_____km.17.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是_______.18.如圖所示,直線y=x+b交x軸A點,交y軸于B點,交雙曲線于P點,連OP,則OP2﹣OA2=__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.20.(6分)如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說明理由;(3)有一動點M從A點出發(fā),在⊙O上按順時針方向運動一周,當(dāng)S△MAO=S△CAO時,求動點M所經(jīng)過的弧長,并寫出此時M點的坐標(biāo).21.(6分)班級的課外活動,學(xué)生們都很積極.梁老師在某班對同學(xué)們進行了一次關(guān)于“我喜愛的體育項目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:調(diào)查了________名學(xué)生;補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;學(xué)校將舉辦運動會,該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.22.(8分)為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學(xué)生共有1200人,試估計該校喜愛看電視的學(xué)生人數(shù);若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.23.(8分)關(guān)于x的一元二次方程x2﹣x﹣(m+2)=0有兩個不相等的實數(shù)根.求m的取值范圍;若m為符合條件的最小整數(shù),求此方程的根.24.(10分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字1和1.B布袋中有三個完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣1和﹣2.小明從A布袋中隨機取出一個小球,記錄其標(biāo)有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點Q的一個坐標(biāo)為(x,y).(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標(biāo);(1)求點Q落在直線y=﹣x﹣1上的概率.25.(10分)如圖,在平面直角坐標(biāo)系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以O(shè)A,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當(dāng)兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標(biāo)為,直線OB的函數(shù)表達(dá)式為;(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式;并求t為何值時,S有最大值,并求出最大值.26.(12分)先化簡,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.27.(12分)計算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關(guān)于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標(biāo)應(yīng)為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.2、B【解析】

只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的首先解決問題,屬于中考常考題型.3、D【解析】

根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,然后根據(jù)題意可列出方程.【詳解】根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,∴全班共送:(x﹣1)x=1980,故選D.【點睛】此題主要考查了一元二次方程的應(yīng)用,本題要注意讀清題意,弄清楚每人要贈送(x﹣1)張相片,有x個人是解決問題的關(guān)鍵.4、B【解析】

先根據(jù)同底數(shù)冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.5、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.6、D【解析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.7、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.8、D【解析】

分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關(guān)鍵是熟練掌握這三種數(shù)的計算方法.9、B【解析】

二次函數(shù),所以二次函數(shù)的開口向下,當(dāng)x<2,y隨x的增大而增大,選項A錯誤;當(dāng)x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標(biāo)為(2,-3),選項C錯誤;頂點坐標(biāo)為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).10、A【解析】

轉(zhuǎn)盤中4個數(shù),每轉(zhuǎn)動一次就要4種可能,而其中是奇數(shù)的有2種可能.然后根據(jù)概率公式直接計算即可【詳解】奇數(shù)有兩種,共有四種情況,將轉(zhuǎn)盤轉(zhuǎn)動一次,求得到奇數(shù)的概率為:P(奇數(shù))=24=1【點睛】此題主要考查了幾何概率,正確應(yīng)用概率公式是解題關(guān)鍵.11、A【解析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數(shù)相同,所以,。故選A。12、B【解析】

根據(jù)菱形的性質(zhì)以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數(shù).【詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.【點睛】本題考查了菱形的性質(zhì)和全等三角形的判定和性質(zhì),注意掌握菱形對邊平行以及對角線相互垂直的性質(zhì).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、>【解析】分析:根據(jù)正比例函數(shù)的圖象經(jīng)過點M(﹣1,1)可以求得該函數(shù)的解析式,然后根據(jù)正比例函數(shù)的性質(zhì)即可解答本題.詳解:設(shè)該正比例函數(shù)的解析式為y=kx,則1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函數(shù)的圖象經(jīng)過點A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案為>.點睛:本題考查了正比例函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用正比例函數(shù)的性質(zhì)解答.14、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點:勾股定理15、4:7或2:5【解析】

根據(jù)E在CD上和CD的延長線上,運用相似三角形分類討論即可.【詳解】解:當(dāng)E在線段CD上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設(shè),即EF=2k,BF=3k∴BE=BF+EF=5k∴EF:BE=2k∶5k=2∶5當(dāng)當(dāng)E在線段CD的延長線上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設(shè),即EF=4k,BF=3k∴BE=BF+EF=7k∴EF:BE=4k∶7k=4∶7故答案為:4:7或2:5.【點睛】本題以矩形為載體,考查了相似三角形的性質(zhì),解題的關(guān)鍵在于根據(jù)圖形分類討論,即數(shù)形結(jié)合的靈活應(yīng)用.16、40【解析】

首先證明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解決問題.【詳解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由題意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2×20×=40(km),故答案為40.【點睛】本題考查解直角三角形的應(yīng)用﹣方向角問題,解題的關(guān)鍵是證明PB=BC,推出∠C=30°.17、x≠﹣1【解析】

分式有意義的條件是分母不等于零.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x+1≠0,解得:x≠-1.

故答案是:x≠-1.【點睛】考查的是分式有意義的條件,掌握分式有意義的條件是解題的關(guān)鍵.18、1【解析】解:∵直線y=x+b與雙曲線(x>0)交于點P,設(shè)P點的坐標(biāo)(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)CD=BE,理由見解析;(1)證明見解析.【解析】

(1)由兩個三角形為等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據(jù)“SAS”可證得△EAB≌△CAD,即可得出結(jié)論;(1)根據(jù)(1)中結(jié)論和等腰直角三角形的性質(zhì)得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后證得EF=FD,BE=CD,等量代換即可得出結(jié)論.【詳解】解:(1)CD=BE,理由如下:∵△ABC和△ADE為等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB與△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【點睛】本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理等知識,結(jié)合題意尋找出三角形全等的條件是解決此題的關(guān)鍵.20、(1)60°;(2)見解析;(3)對應(yīng)的M點坐標(biāo)分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解析】

(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.

(2)由(1)的結(jié)論知:OA=AC,因此OA=AC=AP,即OP邊上的中線等于OP的一半,由此可證得△OCP是直角三角形,且∠OCP=90°,由此可判斷出PC與⊙O的位置關(guān)系.

(3)此題應(yīng)考慮多種情況,若△MAO、△OAC的面積相等,那么它們的高必相等,因此有四個符合條件的M點,即:C點以及C點關(guān)于x軸、y軸、原點的對稱點,可據(jù)此進行求解.【詳解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等邊三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半徑,故PC與⊙O的位置關(guān)系是相切.(3)如圖;有三種情況:①取C點關(guān)于x軸的對稱點,則此點符合M點的要求,此時M點的坐標(biāo)為:M1(2,﹣2);劣弧MA的長為:;②取C點關(guān)于原點的對稱點,此點也符合M點的要求,此時M點的坐標(biāo)為:M2(﹣2,﹣2);劣弧MA的長為:;③取C點關(guān)于y軸的對稱點,此點也符合M點的要求,此時M點的坐標(biāo)為:M3(﹣2,2);優(yōu)弧MA的長為:;④當(dāng)C、M重合時,C點符合M點的要求,此時M4(2,2);優(yōu)弧MA的長為:;綜上可知:當(dāng)S△MAO=S△CAO時,動點M所經(jīng)過的弧長為對應(yīng)的M點坐標(biāo)分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【點睛】本題考查了切線的判定以及弧長的計算方法,注意分類討論思想的運用,不要漏解.21、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學(xué)生數(shù);(2)用學(xué)生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關(guān)鍵.22、(1)50;(2)240;(3).【解析】

用喜愛社會實踐的人數(shù)除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計該校喜愛看電視的學(xué)生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計該校喜愛看電視的學(xué)生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率,也考查了統(tǒng)計圖.23、(1)m>;(2)x1=0,x2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論