2024屆廣東省肇慶市德慶縣重點達標名校中考數(shù)學模試卷含解析_第1頁
2024屆廣東省肇慶市德慶縣重點達標名校中考數(shù)學模試卷含解析_第2頁
2024屆廣東省肇慶市德慶縣重點達標名校中考數(shù)學模試卷含解析_第3頁
2024屆廣東省肇慶市德慶縣重點達標名校中考數(shù)學模試卷含解析_第4頁
2024屆廣東省肇慶市德慶縣重點達標名校中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省肇慶市德慶縣重點達標名校中考數(shù)學模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.函數(shù)(為常數(shù))的圖像上有三點,,,則函數(shù)值的大小關系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y12.下列各圖中,既可經過平移,又可經過旋轉,由圖形①得到圖形②的是()A. B. C. D.3.關于x的一元二次方程x2+3x+m=0有兩個不相等的實數(shù)根,則A.m≤94B.m<944.如圖,△ABC內接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.55.某工廠第二季度的產值比第一季度的產值增長了x%,第三季度的產值又比第二季度的產值增長了x%,則第三季度的產值比第一季度的產值增長了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%6.數(shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.37.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數(shù)點后兩位)(參考數(shù)據(jù):3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里8.為確保信息安全,信息需加密傳輸,發(fā)送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規(guī)則為,明文a,b對應的密文為a+2b,2a-b,例如:明文1,2對應的密文是5,0,當接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,39.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角10.如圖中任意畫一個點,落在黑色區(qū)域的概率是()A. B. C.π D.5011.2017年,全國參加漢語考試的人數(shù)約為6500000,將6500000用科學記數(shù)法表示為()A.6.5×105B.6.5×106C.6.5×107D.65×10512.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若代數(shù)式有意義,則x的取值范圍是__.14.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.15.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O、A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=3時,這兩個二次函數(shù)的最大值之和等于______.16.如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒2cm的速度從點A出發(fā),沿折線AC﹣CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數(shù)圖象如圖2所示.當點P運動5秒時,PD的長的值為_____.17.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內的地面寬度為,兩側離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)18.一次函數(shù)y=kx+b的圖像如圖所示,則當kx+b>0時,x的取值范圍為___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,BC交⊙O于點D,E是弧的中點,AE與BC交于點F,∠C=2∠EAB.求證:AC是⊙O的切線;已知CD=4,CA=6,求AF的長.20.(6分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.21.(6分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網(wǎng)格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.22.(8分)某紡織廠生產的產品,原來每件出廠價為80元,成本為60元.由于在生產過程中平均每生產一件產品有0.5的污水排出,現(xiàn)在為了保護環(huán)境,需對污水凈化處理后再排出.已知每處理1污水的費用為2元,且每月排污設備損耗為8000元.設現(xiàn)在該廠每月生產產品x件,每月純利潤y元:(1)求出y與x的函數(shù)關系式.(純利潤=總收入-總支出)(2)當y=106000時,求該廠在這個月中生產產品的件數(shù).23.(8分)太原市志愿者服務平臺旨在弘揚“奉獻、關愛、互助、進步”的志愿服務精神,培育志思服務文化,推動太原市志愿服務的制度化、常態(tài)化,弘揚社會正能量,截止到2018年5月9日16:00,在該平臺注冊的志愿組織數(shù)達2678個,志愿者人數(shù)達247951人,組織志愿活動19748次,累計志愿服務時間3889241小時,學校為了解共青團員志愿服務情況,調查小組根據(jù)平臺數(shù)據(jù)進行了抽樣問卷調查,過程如下:(1)收集、整理數(shù)據(jù):從九年級隨機抽取40名共青團員,將其志愿服務時間按如下方式分組(A:0~5小時;B:5~10小時;C:10~15小時;D:15~20小時;E:20~25小時;F:25~30小時,注:每組含最小值,不含最大值)得到這40名志愿者服務時間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數(shù)據(jù)整理在如下的頻數(shù)分布表中,請你補充其中的數(shù)據(jù):志愿服務時間ABCDEF頻數(shù)34107(2)描述數(shù)據(jù):根據(jù)上面的頻數(shù)分布表,小明繪制了如下的頻數(shù)直方圖(圖1),請將空缺的部分補充完整;(3)分析數(shù)據(jù):①調查小組從八年級共青團員中隨機抽取40名,將他們的志愿服務時間按(1)題的方式整理后,畫出如圖2的扇形統(tǒng)計圖.請你對比八九年級的統(tǒng)計圖,寫出一個結論;②校團委計劃組織志愿服務時間不足10小時的團員參加義務勞動,根據(jù)上述信息估計九年級200名團員中參加此次義務勞動的人數(shù)約為人;(4)問題解決:校團委計劃組織中考志愿服務活動,共甲、乙、丙三個服務點,八年級的小穎和小文任意選擇一個服務點參與志服務,求兩人恰好選在同一個服務點的概率.24.(10分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=

,cos37°=

,tan37°=

(1)求把手端點A到BD的距離;

(2)求CH的長.

25.(10分)如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)26.(12分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關系是,位置關系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉,若AC=4,CD=2,請直接寫出△PMN面積的最大值.27.(12分)如圖,已知直線AB經過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.求這條直線的函數(shù)關系式及點B的坐標.在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:∵函數(shù)y=(a為常數(shù))中,-a1-1<0,∴函數(shù)圖象的兩個分支分別在二、四象限,在每一象限內y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.2、D【解析】A,B,C只能通過旋轉得到,D既可經過平移,又可經過旋轉得到,故選D.3、B【解析】試題分析:根據(jù)題意得△=32﹣4m>0,解得m<94故選B.考點:根的判別式.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.4、C【解析】

如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質、正切函數(shù)值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.5、D【解析】設第一季度的原產值為a,則第二季度的產值為,第三季度的產值為,則則第三季度的產值比第一季度的產值增長了故選D.6、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.7、B【解析】

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內角和和等腰三角形的性質得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【詳解】根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15【點睛】本題考查了三角形內角和定理與等腰直角三角形的性質,解題的關鍵是熟練的掌握三角形內角和定理與等腰直角三角形的性質.8、A【解析】

根據(jù)題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.9、B【解析】

利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【點睛】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.10、B【解析】

抓住黑白面積相等,根據(jù)概率公式可求出概率.【詳解】因為,黑白區(qū)域面積相等,所以,點落在黑色區(qū)域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區(qū)域面積關系.11、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將6500000用科學記數(shù)法表示為:6.5×106.故答案選B.【點睛】本題考查了科學計數(shù)法,解題的關鍵是熟練的掌握科學計數(shù)法的表示形式.12、A【解析】

一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.【詳解】∵“正”和“負”相對,∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x3【解析】

由代數(shù)式有意義,得

x-30,

解得x3,

故答案為:x3.【點睛】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:分式無意義:分母為零;分式有意義:分母不為零;分式值為零:分子為零且分母不為零.14、6【解析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.15、【解析】

此題考查了二次函數(shù)的最值,勾股定理,等腰三角形的性質和判定的應用,題目比較好,但是有一定的難度,屬于綜合性試題.【詳解】過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,設P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案為.【點睛】考核知識點:二次函數(shù)綜合題.熟記性質,數(shù)形結合是關鍵.16、2.4cm【解析】分析:根據(jù)圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點睛:本題考查了動點問題的函數(shù)圖象,勾股定理,銳角三角函數(shù)等知識,解答本題的關鍵是根據(jù)圖形得到AC、BC的長度,此題難度一般.17、9.1【解析】

建立直角坐標系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數(shù)的簡單應用,能夠建立直角坐標系解出二次函數(shù)解析式是本題關鍵18、x>1【解析】分析:題目要求kx+b>0,即一次函數(shù)的圖像在x軸上方時,觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數(shù)的圖像在x軸上方時,∴x的取值范圍為:x>1.故答案為x>1.點睛:本題考查了一次函數(shù)與一元一次不等式的關系,主要考查學生的觀察視圖能力.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)2【解析】

(1)連結AD,如圖,根據(jù)圓周角定理,由E是的中點得到由于則,再利用圓周角定理得到則所以于是根據(jù)切線的判定定理得到AC是⊙O的切線;先求出的長,用勾股定理即可求出.【詳解】解:(1)證明:連結AD,如圖,∵E是的中點,∴∵∴∵AB是⊙O的直徑,∴∴∴即∴AC是⊙O的切線;(2)∵∴∵,∴【點睛】本題考查切線的判定與性質,圓周角定理,屬于圓的綜合題,注意切線的證明方法,是高頻考點.20、(1);(2).【解析】

(1)一共4個小球,則任取一個球,共有4種不同結果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據(jù)一共出現(xiàn)的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據(jù)表格可得:共有12中等可能的結果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率與不等式的性質.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.21、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據(jù)平移的性質得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質得出對應點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理22、(1)y=19x-1(x>0且x是整數(shù))(2)6000件【解析】

(1)本題的等量關系是:純利潤=產品的出廠單價×產品的數(shù)量-產品的成本價×產品的數(shù)量-生產過程中的污水處理費-排污設備的損耗,可根據(jù)此等量關系來列出總利潤與產品數(shù)量之間的函數(shù)關系式;(2)根據(jù)(1)中得出的式子,將y的值代入其中,求出x即可.【詳解】(1)依題意得:y=80x-60x-0.5x?2-1,化簡得:y=19x-1,∴所求的函數(shù)關系式為y=19x-1.(x>0且x是整數(shù))(2)當y=106000時,代入得:106000=19x-1,解得x=6000,∴這個月該廠生產產品6000件.【點睛】本題是利用一次函數(shù)的有關知識解答實際應用題,可根據(jù)題意找出等量關系,列出函數(shù)式進行求解.23、(1)7,9;(2)見解析;(3)①在15~20小時的人數(shù)最多;②35;(4).【解析】

(1)觀察統(tǒng)計圖即可得解;(2)根據(jù)題意作圖;(3)①根據(jù)兩個統(tǒng)計圖解答即可;②根據(jù)圖1先算出不足10小時的概率再乘以200人即可;(4)根據(jù)題意畫出樹狀圖即可解答.【詳解】解:(1)C的頻數(shù)為7,E的頻數(shù)為9;故答案為7,9;(2)補全頻數(shù)直方圖為:(3)①八九年級共青團員志愿服務時間在15~20小時的人數(shù)最多;②200×=35,所以估計九年級200名團員中參加此次義務勞動的人數(shù)約為35人;故答案為35;(4)畫樹狀圖為:共有9種等可能的結果數(shù),其中兩人恰好選在同一個服務點的結果數(shù)為3,所以兩人恰好選在同一個服務點的概率==.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖與樹狀圖法,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖與樹狀圖法.24、(1)12;(2)CH的長度是10cm.【解析】

(1)、過點A作于點N,過點M作于點Q,根據(jù)Rt△AMQ中α的三角函數(shù)得出得出AN的長度;(2)、根據(jù)△ANB和△AGC相似得出DN的長度,然后求出BN的長度,最后求出GC的長度,從而得出答案.【詳解】解:(1)、過點A作于點N,過點M作于點Q.在中,.∴,∴,∴.(2)、根據(jù)題意:∥.∴.∴.∵,∴.∴.∴.∴.答:的長度是10cm.點睛:本題考查了相似三角形的應用以及三角函數(shù)的應用,在運用數(shù)學知識解決問題過程中,關注核心內容,經歷測量、運算、建模等數(shù)學實踐活動為主線的問題探究過程,突出考查數(shù)學的應用意識和解決問題的能力,蘊含數(shù)學建模,引導學生關注生活,利用數(shù)學方法解決實際問題.25、52【解析】

根據(jù)樓高和山高可求出EF,繼而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根據(jù)CF=BD可建立方程,解出即可.【詳解】如圖,過點C作CF⊥AB于點F.設塔高AE=x,由題意得,EF=BE?CD=56?27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,則,在Rt△ABD中,∠ADB=45°,AB=x+56,則BD=AB=x+56,∵CF=BD,∴,解得:x=52,答:該鐵塔的高AE為52米.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是構造直角三角形,注意利用方程思想求解,難度一般.26、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

(1)由等腰直角三角形的性質易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質可得PM⊥PN;(2)(1)中的結論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當BD的值最大時,PM的值最大,△PMN的面積最大,推出當B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點P、M、N分別為AD、AB、DE的中點,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論