吉林省四平市伊通縣2023-2024學年中考押題數學預測卷含解析_第1頁
吉林省四平市伊通縣2023-2024學年中考押題數學預測卷含解析_第2頁
吉林省四平市伊通縣2023-2024學年中考押題數學預測卷含解析_第3頁
吉林省四平市伊通縣2023-2024學年中考押題數學預測卷含解析_第4頁
吉林省四平市伊通縣2023-2024學年中考押題數學預測卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省四平市伊通縣2023-2024學年中考押題數學預測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC的面積為12,AC=3,現將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.102.如圖1,點O為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處,柱柱同學操控機器人以每秒1個單位長度的速度在圖1中給出線段路徑上運行,柱柱同學將機器人運行時間設為t秒,機器人到點A的距離設為y,得到函數圖象如圖2,通過觀察函數圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當t=3時,機器人一定位于點O;③機器人一定經過點D;④機器人一定經過點E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④3.在正方體的表面上畫有如圖1中所示的粗線,圖2是其展開圖的示意圖,但只在A面上畫有粗線,那么將圖1中剩余兩個面中的粗線畫入圖2中,畫法正確的是()A. B. C. D.4.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數據波動越小 D.方程無實數根5.下列計算正確的是()A.a6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=16.在﹣3,﹣1,0,1四個數中,比﹣2小的數是()A.﹣3 B.﹣1 C.0 D.17.圖為小明和小紅兩人的解題過程.下列敘述正確的是()計算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確8.已知關于x的方程x2﹣4x+c+1=0有兩個相等的實數根,則常數c的值為(

)A.﹣1 B.0 C.1 D.39.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π10.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數圖象是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學習小組做摸球實驗,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.12.分解因式:x2–4x+4=__________.13.已知,則______14.函數y=中,自變量x的取值范圍是15.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.16.如圖,已知平行四邊形ABCD,E是邊BC的中點,聯結DE并延長,與AB的延長線交于點F.設=,=,那么向量用向量、表示為_____.17.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數圖象,則當乙車到達A地的時候,甲車與A地的距離為_____千米.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.19.(5分)菱形的邊長為5,兩條對角線、相交于點,且,的長分別是關于的方程的兩根,求的值.20.(8分)某商場以每件30元的價格購進一種商品,試銷中發(fā)現這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數關系m=162﹣3x.請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數關系式.商場每天銷售這種商品的銷售利潤能否達到500元?如果能,求出此時的銷售價格;如果不能,說明理由.21.(10分)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD=110°,求∠CMA的度數______.22.(10分)關于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.(1)若m是方程的一個實數根,求m的值;(2)若m為負數,判斷方程根的情況.23.(12分)如圖所示,一堤壩的坡角,坡面長度米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角,則此時應將壩底向外拓寬多少米?(結果保留到米)(參考數據:,,)24.(14分)“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:請結合圖表完成下列各題:(1)①表中a的值為,中位數在第組;②頻數分布直方圖補充完整;(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?(3)第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.組別成績x分頻數(人數)第1組50≤x<606第2組60≤x<708第3組70≤x<8014第4組80≤x<90a第5組90≤x<10010

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

過B作BN⊥AC于N,BM⊥AD于M,根據折疊得出∠C′AB=∠CAB,根據角平分線性質得出BN=BM,根據三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項D符合,

故選D.【點睛】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.2、C【解析】

根據圖象起始位置猜想點B或F為起點,則可以判斷①正確,④錯誤.結合圖象判斷3≤t≤4圖象的對稱性可以判斷②正確.結合圖象易得③正確.【詳解】解:由圖象可知,機器人距離點A1個單位長度,可能在F或B點,則正六邊形邊長為1.故①正確;觀察圖象t在3-4之間時,圖象具有對稱性則可知,機器人在OB或OF上,則當t=3時,機器人距離點A距離為1個單位長度,機器人一定位于點O,故②正確;所有點中,只有點D到A距離為2個單位,故③正確;因為機器人可能在F點或B點出發(fā),當從B出發(fā)時,不經過點E,故④錯誤.故選:C.【點睛】本題為動點問題的函數圖象探究題,解答時要注意動點到達臨界前后時圖象的變化趨勢.3、A【解析】

解:可把A、B、C、D選項折疊,能夠復原(1)圖的只有A.故選A.4、C【解析】試題解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數據波動越小,是假命題;D、方程x2+x+1=0無實數根,是真命題;故選:C.考點:命題與定理.5、D【解析】解:A.a6÷a2=a4,故A錯誤;B.(﹣2)﹣1=﹣,故B錯誤;C.(﹣3x2)?2x3=﹣6x5,故C錯;D.(π﹣3)0=1,故D正確.故選D.6、A【解析】

因為正數是比0大的數,負數是比0小的數,正數比負數大;負數的絕對值越大,本身就越小,根據有理數比較大小的法則即可選出答案.【詳解】因為正數是比0大的數,負數是比0小的數,正數比負數大;負數的絕對值越大,本身就越小,所以在-3,-1,0,1這四個數中比-2小的數是-3,故選A.【點睛】本題主要考查有理數比較大小,解決本題的關鍵是要熟練掌握比較有理數大小的方法.7、D【解析】

直接利用分式的加減運算法則計算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點睛】此題主要考查了分式的加減運算,正確進行通分運算是解題關鍵.8、D【解析】分析:由于方程x2﹣4x+c+1=0有兩個相等的實數根,所以?=b2﹣4ac=0,可得關于c的一元一次方程,然后解方程求出c的值.詳解:由題意得,(-4)2-4(c+1)=0,c=3.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.9、C【解析】

根據題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.10、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數圖象.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設袋中有x個紅球,列出方程=20%,求得x=1.

故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據紅球的頻率得到相應的等量關系.12、(x–1)1【解析】試題分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考點:分解因式.13、34【解析】∵,∴=,故答案為34.14、x≥0且x≠1【解析】試題分析:根據分式有意義的條件是分母不為0;分析原函數式可得關系式x-1≠0,解可得答案.試題解析:根據題意可得x-1≠0;解得x≠1;故答案為x≠1.考點:函數自變量的取值范圍;分式有意義的條件.15、1【解析】

由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據相似三角形的性質可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【點睛】本題考查相似三角形的判定與性質,解題的關鍵是掌握相似三角形的判定與性質.16、+2【解析】

根據平行四邊形的判定與性質得到四邊形DBFC是平行四邊形,則DC=BF,故AF=2AB=2DC,結合三角形法則進行解答.【詳解】如圖,連接BD,FC,∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是邊BC的中點,∴,∴EC=BE,即點E是DF的中點,∴四邊形DBFC是平行四邊形,∴DC=BF,故AF=2AB=2DC,∴=+=+2=+2.故答案是:+2.【點睛】此題考查了平面向量的知識、相似三角形的判定與性質以及平行四邊形的性質.注意掌握三角形法則的應用是關鍵.17、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當相遇后車共行駛了720千米時,甲車到達B地,由此則可求得兩車的速度.再根據甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當甲車到達B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當乙車到達A地時,甲車離A地的距離為900-270=630千米.點睛:利用函數圖象解決實際問題,其關鍵在于正確理解函數圖象橫,縱坐標表示的意義,抓住交點,起點.終點等關鍵點,理解問題的發(fā)展過程,將實際問題抽象為數學問題,從而將這個數學問題變化為解答實際問題.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2).【解析】

(1)由切線的性質可知∠DAB=90°,由直角所對的圓周為90°可知∠ACB=90°,根據同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質可知∠B=∠OCB,由對頂角的性質可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE?AD,故此可求得DE=,于是可求得AE=.【詳解】解:(1)∵AD是圓O的切線,∴∠DAB=90°.∵AB是圓O的直徑,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.19、.【解析】

由題意可知:菱形ABCD的邊長是5,則AO2+BO2=25,則再根據根與系數的關系可得:AO+BO=?(2m?1),AO?BO=m2+3;代入AO2+BO2中,得到關于m的方程后,即可求得m的值.【詳解】解:∵,的長分別是關于的方程的兩根,設方程的兩根為和,可令,,∵四邊形是菱形,∴,在中:由勾股定理得:,∴,則,由根與系數的關系得:,,∴,整理得:,解得:,又∵,∴,解得,∴.【點睛】此題主要考查了菱形的性質、勾股定理、以及根與系數的關系,將菱形的性質與一元二次方程根與系數的關系,以及代數式變形相結合解題是一種經常使用的解題方法.20、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場每天銷售這種商品的銷售利潤不能達到500元.【解析】

(1)此題可以按等量關系“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數關系式,并由售價大于進價,且銷售量大于零求得自變量的取值范圍.(2)根據(1)所得的函數關系式,利用配方法求二次函數的最值即可得出答案.【詳解】(1)由題意得:每件商品的銷售利潤為(x﹣2)元,那么m件的銷售利潤為y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關系式為y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價定為42元時獲得的利潤最大,最大銷售利潤是432元.∵500>432,∴商場每天銷售這種商品的銷售利潤不能達到500元.【點睛】本題考查了二次函數在實際生活中的應用,解答本題的關鍵是根據等量關系:“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數關系式,另外要熟練掌握二次函數求最值的方法.21、∠CMA=35°.【解析】

根據兩直線平行,同旁內角互補得出,再根據是的平分線,即可得出的度數,再由兩直線平行,內錯角相等即可得出結論.【詳解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分線,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【點睛】本題考查了角平分線的作法和意義,平行線的性質等知識解決問題.解題時注意:兩直線平行,內錯角相等.22、(1);(2)方程有兩個不相等的實根.【解析】分析:(1)由方程根的定義,代入可得到關于m的方程,則可求得m的值;

(2)計算方程根的判別式,判斷判別式的符號即可.詳解:(1)∵m是方程的一個實數根,

∴m2-(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論