版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆河南省鄭州市中學牟縣重點中學中考數(shù)學最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算2.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機摸出一個球,摸出的球是紅球的概率是()A. B. C. D.3.下列關于x的方程中一定沒有實數(shù)根的是()A. B. C. D.4.在同一直角坐標系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.5.如圖,線段AB是直線y=4x+2的一部分,點A是直線與y軸的交點,點B的縱坐標為6,曲線BC是雙曲線y=的一部分,點C的橫坐標為6,由點C開始不斷重復“A﹣B﹣C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上,分別過P、Q兩點向x軸作垂線段,垂足為點D和E,則四邊形PDEQ的面積是()A.10 B. C. D.156.如圖,將矩形ABCD沿對角線BD折疊,使C落在C'處,BC'交AD于E,則下列結論不一定成立的是()A.AD=BC' B.∠EBD=∠EDBC.ΔABE~ΔCBD D.sin7.有個零件(正方體中間挖去一個圓柱形孔)如圖放置,它的主視圖是A. B. C. D.8.對于實數(shù)x,我們規(guī)定表示不大于x的最大整數(shù),例如,,,若,則x的取值可以是()A.40 B.45 C.51 D.569.下列說法中,正確的個數(shù)共有()(1)一個三角形只有一個外接圓;(2)圓既是軸對稱圖形,又是中心對稱圖形;(3)在同圓中,相等的圓心角所對的弧相等;(4)三角形的內(nèi)心到該三角形三個頂點距離相等;A.1個B.2個C.3個D.4個10.若在同一直角坐標系中,正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象無交點,則有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<0二、填空題(共7小題,每小題3分,滿分21分)11.若a+b=3,ab=2,則a2+b2=_____.12.與是位似圖形,且對應面積比為4:9,則與的位似比為______.13.方程組的解一定是方程_____與_____的公共解.14.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足為點D,以點D為圓心作⊙D,使得點A在⊙D外,且點B在⊙D內(nèi).設⊙D的半徑為r,那么r的取值范圍是_________.15.如圖,在矩形ABCD中,AD=3,將矩形ABCD繞點A逆時針旋轉,得到矩形AEFG,點B的對應點E落在CD上,且DE=EF,則AB的長為_____.16.若是關于的完全平方式,則__________.17.圓錐的底面半徑為4cm,高為5cm,則它的表面積為______cm1.三、解答題(共7小題,滿分69分)18.(10分)計算:(﹣2018)0﹣4sin45°+﹣2﹣1.19.(5分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?20.(8分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學的數(shù)學興趣小組針對風電塔桿進行了測量,甲同學站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)21.(10分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應再向前跑多少米?22.(10分)解不等式組:,并把解集在數(shù)軸上表示出來.23.(12分)如圖1,圖2…、圖m是邊長均大于2的三角形、四邊形、…、凸n邊形.分別以它們的各頂點為圓心,以1為半徑畫弧與兩鄰邊相交,得到3條弧、4條弧…、n條?。?1)圖1中3條弧的弧長的和為,圖2中4條弧的弧長的和為;(2)求圖m中n條弧的弧長的和(用n表示).24.(14分)計算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
有旋轉的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉的性質(zhì):旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.2、B【解析】袋中一共7個球,摸到的球有7種可能,而且機會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.3、B【解析】
根據(jù)根的判別式的概念,求出△的正負即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數(shù)根,B.,△=36-144=-1080,∴原方程沒有實數(shù)根,C.,,△=10,∴原方程有兩個不相等的實數(shù)根,D.,△=m2+80,∴原方程有兩個不相等的實數(shù)根,故選B.【點睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關鍵.4、D【解析】
根據(jù)k值的正負性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經(jīng)過象限,即可得出答案.【詳解】解:有兩種情況,當k>0是時,一次函數(shù)y=kx-k的圖象經(jīng)過一、三、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過一、三象限;當k<0時,一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過二、四象限;根據(jù)選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經(jīng)過的象限是解題的關鍵.5、C【解析】
A,C之間的距離為6,點Q與點P的水平距離為3,進而得到A,B之間的水平距離為1,且k=6,根據(jù)四邊形PDEQ的面積為,即可得到四邊形PDEQ的面積.【詳解】A,C之間的距離為6,2017÷6=336…1,故點P離x軸的距離與點B離x軸的距離相同,在y=4x+2中,當y=6時,x=1,即點P離x軸的距離為6,∴m=6,2020﹣2017=3,故點Q與點P的水平距離為3,∵解得k=6,雙曲線1+3=4,即點Q離x軸的距離為,∴∵四邊形PDEQ的面積是.故選:C.【點睛】考查了反比例函數(shù)的圖象與性質(zhì),平行四邊形的面積,綜合性比較強,難度較大.6、C【解析】分析:主要根據(jù)折疊前后角和邊相等對各選項進行判斷,即可選出正確答案.詳解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正確.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正確.D、∵sin∠ABE=AEBE∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=AEED由已知不能得到△ABE∽△CBD.故選C.點睛:本題可以采用排除法,證明A,B,D都正確,所以不正確的就是C,排除法也是數(shù)學中一種常用的解題方法.7、C【解析】
根據(jù)主視圖的定義判斷即可.【詳解】解:從正面看一個正方形被分成三部分,兩條分別是虛線,故正確.故選:.【點睛】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關鍵.8、C【解析】
解:根據(jù)定義,得∴解得:.故選C.9、C【解析】
根據(jù)外接圓的性質(zhì),圓的對稱性,三角形的內(nèi)心以及圓周角定理即可解出.【詳解】(1)一個三角形只有一個外接圓,正確;(2)圓既是軸對稱圖形,又是中心對稱圖形,正確;(3)在同圓中,相等的圓心角所對的弧相等,正確;(4)三角形的內(nèi)心是三個內(nèi)角平分線的交點,到三邊的距離相等,錯誤;故選:C.【點睛】此題考查了外接圓的性質(zhì),三角形的內(nèi)心及軸對稱和中心對稱的概念,要求學生對這些概念熟練掌握.10、D【解析】當k1,k2同號時,正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象有交點;當k1,k2異號時,正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象無交點,即可得當k1k2<0時,正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象無交點,故選D.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
根據(jù)a2+b2=(a+b)2-2ab,代入計算即可.【詳解】∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=1.故答案為:1.【點睛】本題考查對完全平方公式的變形應用能力,要熟記有關完全平方的幾個變形公式.12、2:1【解析】
由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對應面積比為4:9,與的相似比為2:1,故答案為:2:1.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.13、5x﹣3y=83x+8y=9【解析】
方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.14、.【解析】
先根據(jù)勾股定理求出AB的長,進而得出CD的長,由點與圓的位置關系即可得出結論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD?BD=CD2,設AD=x,BD=1-x.解得x=,∴點A在圓外,點B在圓內(nèi),r的范圍是,故答案為.【點睛】本題考查的是點與圓的位置關系,熟知點與圓的三種位置關系是解答此題的關鍵.15、3【解析】【分析】根據(jù)旋轉的性質(zhì)知AB=AE,在直角三角形ADE中根據(jù)勾股定理求得AE長即可得.【詳解】∵四邊形ABCD是矩形,∴∠D=90°,BC=AD=3,∵將矩形ABCD繞點A逆時針旋轉得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案為3.【點睛】本題考查矩形的性質(zhì)和旋轉的性質(zhì),熟知旋轉前后哪些線段是相等的是解題的關鍵.16、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進而求出答案.詳解:∵x2+2(m-3)x+16是關于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關鍵.17、【解析】
利用勾股定理求得圓錐的母線長,則圓錐表面積=底面積+側面積=π×底面半徑的平方+底面周長×母線長÷1.【詳解】底面半徑為4cm,則底面周長=8πcm,底面面積=16πcm1;由勾股定理得,母線長=,圓錐的側面面積,∴它的表面積=(16π+4)cm1=cm1,故答案為:.【點睛】本題考查了有關扇形和圓錐的相關計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:(1)圓錐的母線長等于側面展開圖的扇形半徑;(1)圓錐的底面周長等于側面展開圖的扇形弧長.正確對這兩個關系的記憶是解題的關鍵.三、解答題(共7小題,滿分69分)18、.【解析】
根據(jù)零指數(shù)冪和特殊角的三角函數(shù)值進行計算【詳解】解:原式=1﹣4×+2﹣=1﹣2+2﹣=【點睛】本題考查了實數(shù)的運算:實數(shù)的運算和在有理數(shù)范圍內(nèi)一樣,值得一提的是,實數(shù)既可以進行加、減、乘、除、乘方運算,又可以進行開方運算,其中正實數(shù)可以開平方.19、(1);(2)淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.【解析】試題分析:(1)根據(jù)等可能事件的概率的定義,分別確定總的可能性和是勾股數(shù)的情況的個數(shù);(2)用列表法列舉出所有的情況和兩張卡片上的數(shù)都是勾股數(shù)的情況即可.試題解析:(1)嘉嘉隨機抽取一張卡片共出現(xiàn)4種等可能結果,其中抽到的卡片上的數(shù)是勾股數(shù)的結果有3種,所以嘉嘉抽取一張卡片上的數(shù)是勾股數(shù)的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現(xiàn)的結果有12種,其中抽到的兩張卡片上的數(shù)都是勾股數(shù)的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.20、塔桿CH的高為42米【解析】
作BE⊥DH,知GH=BE、BG=EH=4,設AH=x,則BE=GH=23+x,由CH=AHtan∠CAH=tan55°?x知CE=CH-EH=tan55°?x-4,根據(jù)BE=DE可得關于x的方程,解之可得.【詳解】解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=4,設AH=x,則BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°?x﹣4+15,解得:x≈30,∴CH=tan55°?x=1.4×30=42,答:塔桿CH的高為42米.【點睛】本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構造直角三角形并解直角三角形.21、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應再向前跑17米.【解析】
(1)依題意代入x的值可得拋物線的表達式.(2)令y=0可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度建筑模板研發(fā)與技術支持合同4篇
- 臨時工勞動合同范本(2024版)
- 中醫(yī)承師合同模板
- 2025版外貿(mào)鞋子購銷合同模板:品牌設計合作協(xié)議3篇
- 2025年度汽車維修行業(yè)深度合作框架協(xié)議
- 二零二五年度解除租賃合同及約定租賃物租賃期限變更協(xié)議
- 二零二五年度洗車行業(yè)培訓與認證協(xié)議
- 2025年度市政基礎設施竣工驗收合同
- 二零二五年度勞動合同解除員工離職賠償金支付協(xié)議
- 二零二五年度水利工程測繪數(shù)據(jù)保密協(xié)議書
- 西方史學史課件3教學
- 2024年中國醫(yī)藥研發(fā)藍皮書
- 廣東省佛山市 2023-2024學年五年級(上)期末數(shù)學試卷
- 臺兒莊介紹課件
- 疥瘡病人的護理
- 人工智能算法與實踐-第16章 LSTM神經(jīng)網(wǎng)絡
- 17個崗位安全操作規(guī)程手冊
- 2025年山東省濟南市第一中學高三下學期期末統(tǒng)一考試物理試題含解析
- 中學安全辦2024-2025學年工作計劃
- 網(wǎng)絡安全保障服務方案(網(wǎng)絡安全運維、重保服務)
- 現(xiàn)代科學技術概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學院
評論
0/150
提交評論