版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖南省長(zhǎng)沙市周南實(shí)驗(yàn)中學(xué)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點(diǎn)P,則∠P=()A.90°-α B.90°+α C. D.360°-α2.已知關(guān)于x的一元二次方程3x2+4x﹣5=0,下列說(shuō)法正確的是()A.方程有兩個(gè)相等的實(shí)數(shù)根B.方程有兩個(gè)不相等的實(shí)數(shù)根C.沒(méi)有實(shí)數(shù)根D.無(wú)法確定3.若正比例函數(shù)y=mx(m是常數(shù),m≠0)的圖象經(jīng)過(guò)點(diǎn)A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣44.實(shí)數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<05.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=()A.1 B.2 C.3 D.46.要使分式有意義,則x的取值應(yīng)滿足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣27.如圖,小明要測(cè)量河內(nèi)小島B到河邊公路l的距離,在A點(diǎn)測(cè)得,在C點(diǎn)測(cè)得,又測(cè)得米,則小島B到公路l的距離為()米.A.25 B. C. D.8.如圖,是一個(gè)工件的三視圖,則此工件的全面積是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm29.在某?!拔业闹袊?guó)夢(mèng)”演講比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績(jī)各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前5名,不僅要了解自己的成績(jī),還要了解這9名學(xué)生成績(jī)的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)10.關(guān)于x的一元二次方程x2+8x+q=0有兩個(gè)不相等的實(shí)數(shù)根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥4二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.12.如圖,無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無(wú)人機(jī)距地面高度CD為米,點(diǎn)A、D、B在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號(hào))13.計(jì)算:________.14.如圖,四邊形ACDF是正方形,和都是直角,且點(diǎn)三點(diǎn)共線,,則陰影部分的面積是__________.15.計(jì)算(-2)×3+(-3)=_______________.16.拋物線y=(x﹣3)2+1的頂點(diǎn)坐標(biāo)是____.三、解答題(共8題,共72分)17.(8分)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax+c(其中a、c為常數(shù),且a<0)與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)B,此拋物線頂點(diǎn)C到x軸的距離為1.(1)求拋物線的表達(dá)式;(2)求∠CAB的正切值;(3)如果點(diǎn)P是x軸上的一點(diǎn),且∠ABP=∠CAO,直接寫(xiě)出點(diǎn)P的坐標(biāo).18.(8分)已知拋物線y=ax2+bx+2過(guò)點(diǎn)A(5,0)和點(diǎn)B(﹣3,﹣4),與y軸交于點(diǎn)C.(1)求拋物線y=ax2+bx+2的函數(shù)表達(dá)式;(2)求直線BC的函數(shù)表達(dá)式;(3)點(diǎn)E是點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn),連接AE、BE,點(diǎn)P是折線EB﹣BC上的一個(gè)動(dòng)點(diǎn),①當(dāng)點(diǎn)P在線段BC上時(shí),連接EP,若EP⊥BC,請(qǐng)直接寫(xiě)出線段BP與線段AE的關(guān)系;②過(guò)點(diǎn)P作x軸的垂線與過(guò)點(diǎn)C作的y軸的垂線交于點(diǎn)M,當(dāng)點(diǎn)M不與點(diǎn)C重合時(shí),點(diǎn)M關(guān)于直線PC的對(duì)稱(chēng)點(diǎn)為點(diǎn)M′,如果點(diǎn)M′恰好在坐標(biāo)軸上,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).19.(8分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點(diǎn)D是BC的中點(diǎn),點(diǎn)P是AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),延長(zhǎng)PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當(dāng)AP的值為時(shí),四邊形PBEC是矩形;②當(dāng)AP的值為時(shí),四邊形PBEC是菱形.20.(8分)如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC,垂足為E,過(guò)點(diǎn)E作EF⊥AB,垂足為F,連接FD.(1)求證:DE是⊙O的切線;(2)求EF的長(zhǎng).21.(8分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).22.(10分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數(shù)軸上表示出來(lái).23.(12分)鮮豐水果店計(jì)劃用元/盒的進(jìn)價(jià)購(gòu)進(jìn)一款水果禮盒以備銷(xiāo)售.據(jù)調(diào)查,當(dāng)該種水果禮盒的售價(jià)為元/盒時(shí),月銷(xiāo)量為盒,每盒售價(jià)每增長(zhǎng)元,月銷(xiāo)量就相應(yīng)減少盒,若使水果禮盒的月銷(xiāo)量不低于盒,每盒售價(jià)應(yīng)不高于多少元?在實(shí)際銷(xiāo)售時(shí),由于天氣和運(yùn)輸?shù)脑?,每盒水果禮盒的進(jìn)價(jià)提高了,而每盒水果禮盒的售價(jià)比(1)中最高售價(jià)減少了,月銷(xiāo)量比(1)中最低月銷(xiāo)量盒增加了,結(jié)果該月水果店銷(xiāo)售該水果禮盒的利潤(rùn)達(dá)到了元,求的值.24.我們來(lái)定義一種新運(yùn)算:對(duì)于任意實(shí)數(shù)x、y,“※”為a※b=(a+1)(b+1)﹣1.(1)計(jì)算(﹣3)※9(2)嘉琪研究運(yùn)算“※”之后認(rèn)為它滿足交換律,你認(rèn)為她的判斷(正確、錯(cuò)誤)(3)請(qǐng)你幫助嘉琪完成她對(duì)運(yùn)算“※”是否滿足結(jié)合律的證明.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點(diǎn):1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.2、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個(gè)不相等的實(shí)數(shù)根.故答案選B.考點(diǎn):一元二次方程根的判別式.3、B【解析】
利用待定系數(shù)法求出m,再結(jié)合函數(shù)的性質(zhì)即可解決問(wèn)題.【詳解】解:∵y=mx(m是常數(shù),m≠0)的圖象經(jīng)過(guò)點(diǎn)A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【點(diǎn)睛】本題考查待定系數(shù)法,一次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考常考題型.4、C【解析】
直接利用a,b在數(shù)軸上的位置,進(jìn)而分別對(duì)各個(gè)選項(xiàng)進(jìn)行分析得出答案.【詳解】選項(xiàng)A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項(xiàng)A不合題意;選項(xiàng)B,從數(shù)軸上看出,a在原點(diǎn)左側(cè),b在原點(diǎn)右側(cè),∴a<0,b>0,∴ab<0,故選項(xiàng)B不合題意;選項(xiàng)C,從數(shù)軸上看出,a在b的左側(cè),∴a<b,即a﹣b<0,故選項(xiàng)C符合題意;選項(xiàng)D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項(xiàng)D不合題意.故選:C.【點(diǎn)睛】本題考查數(shù)軸和有理數(shù)的四則運(yùn)算,解題的關(guān)鍵是掌握利用數(shù)軸表示有理數(shù)的大小.5、B【解析】
先利用三角函數(shù)計(jì)算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長(zhǎng).【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點(diǎn)C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).6、D【解析】試題分析:∵分式有意義,∴x+1≠0,∴x≠﹣1,即x的取值應(yīng)滿足:x≠﹣1.故選D.考點(diǎn):分式有意義的條件.7、B【解析】
解:過(guò)點(diǎn)B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.8、C【解析】
先根據(jù)三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計(jì)算母線長(zhǎng)為10,根據(jù)圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形半徑等于圓錐的母線長(zhǎng)計(jì)算圓錐的側(cè)面積和底面積的和即可.【詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長(zhǎng)==10,所以此工件的全面積=π62+2π610=96π(cm2).故答案選C.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓錐的面積及由三視圖判斷幾何體,解題的關(guān)鍵是熟練的掌握?qǐng)A錐的面積及由三視圖判斷幾何體.9、D【解析】
根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù))的意義,9人成績(jī)的中位數(shù)是第5名的成績(jī).參賽選手要想知道自己是否能進(jìn)入前5名,只需要了解自己的成績(jī)以及全部成績(jī)的中位數(shù),比較即可.【詳解】由于總共有9個(gè)人,且他們的分?jǐn)?shù)互不相同,第5的成績(jī)是中位數(shù),要判斷是否進(jìn)入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【點(diǎn)睛】本題考查了統(tǒng)計(jì)量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.10、A【解析】∵關(guān)于x的一元二次方程x2+8x+q=0有兩個(gè)不相等的實(shí)數(shù)根,∴△>0,即82-4q>0,∴q<16,故選A.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】
延長(zhǎng)AD和BC交于點(diǎn)E,在直角△ABE中利用三角函數(shù)求得BE的長(zhǎng),則EC的長(zhǎng)即可求得,然后在直角△CDE中利用三角函數(shù)的定義求解.【詳解】如圖,延長(zhǎng)AD、BC相交于點(diǎn)E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.12、100(1+)【解析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計(jì)算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計(jì)算AD+BD即可.詳解:如圖,∵無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點(diǎn)間的距離為100(1+)米.故答案為100(1+).點(diǎn)睛:本題考查了解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題:解決此類(lèi)問(wèn)題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒(méi)有直角三角形時(shí),要通過(guò)作高或垂線構(gòu)造直角三角形.13、【解析】
根據(jù)二次根式的運(yùn)算法則先算乘法,再將分母有理化,然后相加即可.【詳解】解:原式==【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算:先把各二次根式化簡(jiǎn)為最簡(jiǎn)二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.14、8【解析】【分析】證明△AEC≌△FBA,根據(jù)全等三角形對(duì)應(yīng)邊相等可得EC=AB=4,然后再利用三角形面積公式進(jìn)行求解即可.【詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì),三角形面積等,求出CE=AB是解題的關(guān)鍵.15、-9【解析】
根據(jù)有理數(shù)的計(jì)算即可求解.【詳解】(-2)×3+(-3)=-6-3=-9【點(diǎn)睛】此題主要考查有理數(shù)的混合運(yùn)算,解題的關(guān)鍵是熟知有理數(shù)的運(yùn)算法則.16、(3,1)【解析】分析:已知拋物線解析式為頂點(diǎn)式,可直接寫(xiě)出頂點(diǎn)坐標(biāo).詳解:∵y=(x﹣3)2+1為拋物線的頂點(diǎn)式,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,拋物線的頂點(diǎn)坐標(biāo)為(3,1).故答案為(3,1).點(diǎn)睛:主要考查了拋物線頂點(diǎn)式的運(yùn)用.三、解答題(共8題,共72分)17、(4)y=﹣x4﹣4x+3;(4);(3)點(diǎn)P的坐標(biāo)是(4,0)【解析】
(4)先求得拋物線的對(duì)稱(chēng)軸方程,然后再求得點(diǎn)C的坐標(biāo),設(shè)拋物線的解析式為y=a(x+4)4+4,將點(diǎn)(-3,0)代入求得a的值即可;(4)先求得A、B、C的坐標(biāo),然后依據(jù)兩點(diǎn)間的距離公式可得到BC、AB,AC的長(zhǎng),然后依據(jù)勾股定理的逆定理可證明∠ABC=90°,最后,依據(jù)銳角三角函數(shù)的定義求解即可;(3)連接BC,可證得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入個(gè)數(shù)據(jù)可得OP的值,可得P點(diǎn)坐標(biāo).【詳解】解:(4)由題意得,拋物線y=ax4+4ax+c的對(duì)稱(chēng)軸是直線,∵a<0,拋物線開(kāi)口向下,又與x軸有交點(diǎn),∴拋物線的頂點(diǎn)C在x軸的上方,由于拋物線頂點(diǎn)C到x軸的距離為4,因此頂點(diǎn)C的坐標(biāo)是(﹣4,4).可設(shè)此拋物線的表達(dá)式是y=a(x+4)4+4,由于此拋物線與x軸的交點(diǎn)A的坐標(biāo)是(﹣3,0),可得a=﹣4.因此,拋物線的表達(dá)式是y=﹣x4﹣4x+3.(4)如圖4,點(diǎn)B的坐標(biāo)是(0,3).連接BC.∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,得AB4+BC4=AC4.∴△ABC為直角三角形,∠ABC=90°,所以tan∠CAB=.即∠CAB的正切值等于.(3)如圖4,連接BC,∵OA=OB=3,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAP=∠ABO=45°,∵∠CAO=∠ABP,∴∠CAB=∠OBP,∵∠ABC=∠BOP=90°,∴△ACB∽△BPO,∴,∴,OP=4,∴點(diǎn)P的坐標(biāo)是(4,0).【點(diǎn)睛】本題主要考查二次函數(shù)的圖像與性質(zhì),綜合性大.18、(1)y=﹣310x2+1110x+2;(2)y=2x+2;(3)①線段BP與線段AE的關(guān)系是相互垂直;②點(diǎn)P的坐標(biāo)為:(﹣4+23,﹣8+43)或(﹣4﹣23,﹣8﹣43)或(0,﹣4)或(﹣【解析】
(1)將A(5,0)和點(diǎn)B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C點(diǎn)坐標(biāo)為(0,2),把點(diǎn)B、C的坐標(biāo)代入直線方程y=kx+b即可求解;(3)①AE直線的斜率kAE=2,而直線BC斜率的kAE=2即可求解;②考慮當(dāng)P點(diǎn)在線段BC上時(shí)和在線段BE上時(shí)兩種情況,利用PM′=PM即可求解.【詳解】(1)將A(5,0)和點(diǎn)B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函數(shù)的表達(dá)式為y=﹣x2+x+2;(2)C點(diǎn)坐標(biāo)為(0,2),把點(diǎn)B、C的坐標(biāo)代入直線方程y=kx+b,解得:k=2,b=2,故:直線BC的函數(shù)表達(dá)式為y=2x+2,(3)①E是點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn),E坐標(biāo)為(3,﹣4),則AE直線的斜率kAE=2,而直線BC斜率的kAE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而B(niǎo)P=AE,∴線段BP與線段AE的關(guān)系是相互垂直;②設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)P點(diǎn)在線段BC上時(shí),P坐標(biāo)為(m,2m+2),M坐標(biāo)為(m,2),則PM=2m,直線MM′⊥BC,∴kMM′=﹣,直線MM′的方程為:y=﹣x+(2+m),則M′坐標(biāo)為(0,2+m)或(4+m,0),由題意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故點(diǎn)P的坐標(biāo)為(﹣4±2,﹣8±4);當(dāng)P點(diǎn)在線段BE上時(shí),點(diǎn)P坐標(biāo)為(m,﹣4),點(diǎn)M坐標(biāo)為(m,2),則PM=6,直線MM′的方程不變,為y=﹣x+(2+m),則M′坐標(biāo)為(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,無(wú)解;故點(diǎn)P的坐標(biāo)為(0,﹣4)或(﹣,﹣4);綜上所述:點(diǎn)P的坐標(biāo)為:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【點(diǎn)睛】主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來(lái),利用點(diǎn)的坐標(biāo)的意義表示線段的長(zhǎng)度,從而求出線段之間的關(guān)系.19、證明見(jiàn)解析;(2)①9;②12.5.【解析】
(1)根據(jù)對(duì)角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點(diǎn)D是BC的中點(diǎn),∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當(dāng)∠APC=90°時(shí),四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當(dāng)AP的值為9時(shí),四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設(shè)BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當(dāng)PC=PB時(shí),四邊形PBEC是菱形,此時(shí)點(diǎn)P為AB的中點(diǎn),所以AP=12.5,∴當(dāng)AP的值為12.5時(shí),四邊形PBEC是菱形.【點(diǎn)睛】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、矩形的判定,解題的關(guān)鍵是掌握特殊圖形的判定以及重要的性質(zhì).20、(1)見(jiàn)解析;(2).【解析】
(1)連接OD,根據(jù)切線的判定方法即可求出答案;(2)由于OD∥AC,點(diǎn)O是AB的中點(diǎn),從而可知OD為△ABC的中位線,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC?CE=4?1=3,在Rt△AEF中,所以EF=AE?sinA=3×sin60°=.【詳解】(1)連接OD,∵△ABC是等邊三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等邊三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切線(2)∵OD∥AC,點(diǎn)O是AB的中點(diǎn),∴OD為△ABC的中位線,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE?sinA=3×sin60°=【點(diǎn)睛】本題考查圓的綜合問(wèn)題,涉及切線的判定,銳角三角函數(shù),含30度角的直角三角形的性質(zhì),等邊三角形的性質(zhì),本題屬于中等題型.21、(1)y=﹣2x+1;(2)點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【解析】
(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過(guò)點(diǎn)A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點(diǎn)B(n,﹣1)在雙曲線y=﹣上,∴點(diǎn)B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過(guò)點(diǎn)A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時(shí),x=,∴點(diǎn)C(,0).設(shè)點(diǎn)P的坐標(biāo)為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【點(diǎn)睛】本題考查了
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《Web應(yīng)用開(kāi)發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州鐵路職業(yè)技術(shù)學(xué)院《車(chē)輛電器與電子技術(shù)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年陜西省安全員C證考試(專(zhuān)職安全員)題庫(kù)及答案
- 2025甘肅省安全員《A證》考試題庫(kù)
- 2025安徽省安全員《A證》考試題庫(kù)及答案
- 揚(yáng)州慢公開(kāi)課課件2
- 《菱形的判定方法》課件
- 安全風(fēng)險(xiǎn)管控課件
- 《管理學(xué)院簡(jiǎn)介》課件
- 棉鞋里的陽(yáng)光課件
- 修井作業(yè)冬季和雨季技術(shù)服務(wù)方案
- 三相電能表測(cè)量誤差不確定分析報(bào)
- 色彩基礎(chǔ)知識(shí)ppt
- Q∕GDW 12082-2021 輸變電設(shè)備物聯(lián)網(wǎng)無(wú)線傳感器通用技術(shù)規(guī)范
- 加油站冬季安全教育
- 皮爾遜Ⅲ型曲線模比系數(shù)計(jì)算(共享版).xls
- 腹膜透析并發(fā)腹膜炎臨床路徑
- (完整版)市政工程施工工期定額(定稿).docx
- 商業(yè)發(fā)票INVOICE模板
- 超聲波焊接作業(yè)指導(dǎo)書(shū)(共8頁(yè))
- 《你的生命有什么可能》PPT
評(píng)論
0/150
提交評(píng)論