重慶市銅梁區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第1頁
重慶市銅梁區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第2頁
重慶市銅梁區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第3頁
重慶市銅梁區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第4頁
重慶市銅梁區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

重慶市銅梁區(qū)2024屆中考數(shù)學(xué)模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若,則的值為()A.12 B.2 C.3 D.02.為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費(fèi);②年用水量不超過240m1的該市居民家庭按第三檔水價交費(fèi);③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④3.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.434.下列四個幾何體中,左視圖為圓的是()A. B. C. D.5.下列運(yùn)算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣16.在數(shù)軸上表示不等式組的解集,正確的是()A. B.C. D.7.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關(guān)系的圖象是()A. B. C. D.8.的值是A.±3 B.3 C.9 D.819.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°10.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉(zhuǎn)動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m二、填空題(共7小題,每小題3分,滿分21分)11.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個數(shù)是______.12.將三角形紙片()按如圖所示的方式折疊,使點落在邊上,記為點,折痕為,已知,,若以點,,為頂點的三角形與相似,則的長度是______.13.如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.(1)計算△ABC的周長等于_____.(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).___________________________.14.按照神舟號飛船環(huán)境控制與生命保障分系統(tǒng)的設(shè)計指標(biāo),“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.15.如圖,中,∠,,的面積為,為邊上一動點(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.16.如圖,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F(xiàn)兩點.若AC=,∠AEO=120°,則FC的長度為_____.17.如圖,正方形內(nèi)的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設(shè)可以在正方形內(nèi)部隨意取點,那么這個點取在陰影部分的概率為.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,矩形DOBC的頂點O與坐標(biāo)原點重合,B、D分別在坐標(biāo)軸上,點C的坐標(biāo)為(6,4),反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.(1)求反比例函數(shù)的解析式;(2)求△OEF的面積;(3)設(shè)直線EF的解析式為y=k2x+b,請結(jié)合圖象直接寫出不等式k2x+b>的解集.19.(5分)先化簡代數(shù)式,再從范圍內(nèi)選取一個合適的整數(shù)作為的值代入求值。20.(8分)如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點D作DE⊥AC,垂足為E,過點E作EF⊥AB,垂足為F,連接FD.(1)求證:DE是⊙O的切線;(2)求EF的長.21.(10分)小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:他認(rèn)為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結(jié)論)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數(shù)量關(guān)系.22.(10分)近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進(jìn)行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:本次一共調(diào)查了多少名購買者?請補(bǔ)全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為度.若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?23.(12分)已知:正方形繞點順時針旋轉(zhuǎn)至正方形,連接.如圖,求證:;如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個角,使寫出的每一個角的大小都等于旋轉(zhuǎn)角.24.(14分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達(dá)式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標(biāo);如果不存在,說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

先根據(jù)得出,然后利用提公因式法和完全平方公式對進(jìn)行變形,然后整體代入即可求值.【詳解】∵,∴,∴.故選:A.【點睛】本題主要考查整體代入法求代數(shù)式的值,掌握完全平方公式和整體代入法是解題的關(guān)鍵.2、B【解析】

利用條形統(tǒng)計圖結(jié)合中位數(shù)和中位數(shù)的定義分別分析得出答案.【詳解】①由條形統(tǒng)計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),

×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費(fèi),正確;

②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),

∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費(fèi),故此選項錯誤;

③∵5萬個數(shù)據(jù)的中間是第25000和25001的平均數(shù),

∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項錯誤;

④該市居民家庭年用水量為110m1有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,

故選B.【點睛】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計圖獲取正確信息是解題關(guān)鍵.3、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.4、A【解析】

根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.5、D【解析】分析:根據(jù)合并同類項法則,同底數(shù)冪相除,積的乘方的性質(zhì),同底數(shù)冪相乘的性質(zhì),逐一判斷即可.詳解:根據(jù)合并同類項法則,可知x3+x3=2x3,故不正確;根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據(jù)積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點睛:此題主要考查了整式的相關(guān)運(yùn)算,是一道綜合性題目,熟練應(yīng)用整式的相關(guān)性質(zhì)和運(yùn)算法則是解題關(guān)鍵.6、C【解析】

解不等式組,再將解集在數(shù)軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關(guān)鍵.7、C【解析】

首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關(guān)系變?yōu)橄瓤旌舐驹斀狻扛鶕?jù)題意和圖形的形狀,可知水的最大深度h與時間t之間的關(guān)系分為兩段,先快后慢。故選:C.【點睛】此題考查函數(shù)的圖象,解題關(guān)鍵在于觀察圖形8、C【解析】試題解析:∵∴的值是3故選C.9、C【解析】試題分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故選C.考點:平行線的性質(zhì).10、B【解析】

因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據(jù)正弦來解題,求出∠CAB,進(jìn)而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應(yīng)用,解本題的關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.二、填空題(共7小題,每小題3分,滿分21分)11、①②③④.【解析】

由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對應(yīng)邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,F(xiàn)G⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.12、或2【解析】

由折疊性質(zhì)可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對兩種情況進(jìn)行討論,設(shè)出B’F=BF=x,列出比例式方程解方程即可得到結(jié)果.【詳解】由折疊性質(zhì)可知B’F=BF,設(shè)B’F=BF=x,故CF=4-x當(dāng)△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當(dāng)△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長度可以為或2.【點睛】本題主要考查相似三角形性質(zhì),解題關(guān)鍵在于能夠?qū)蓚€相似三角形進(jìn)行分類討論.13、12連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【解析】

(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【點睛】本題涉及的知識點有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.14、17℃.【解析】

根據(jù)返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【點睛】本題考查正數(shù)和負(fù)數(shù)的意義.±4℃指的是比21℃高于4℃或低于4℃.15、4.【解析】

過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當(dāng)AD⊥BC時,AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當(dāng)AD⊥BC時,AD=4=AE=AF,進(jìn)而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過E作EG⊥AF,交FA的延長線于G,

由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,

∵∠BAC=75°,

∴∠EAF=150°,

∴∠EAG=30°,

∴EG=AE=AD,

當(dāng)AD⊥BC時,AD最短,

∵BC=7,△ABC的面積為14,

∴當(dāng)AD⊥BC時,,即:,∴.

∴△AEF的面積最小值為:

AF×EG=×4×2=4,故答案為:4.【點睛】本題主要考查了折疊問題,解題的關(guān)鍵是利用對應(yīng)邊和對應(yīng)角相等.16、1【解析】

先根據(jù)矩形的性質(zhì),推理得到OF=CF,再根據(jù)Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,

∴∠EDO=30°,∠DEO=60°,

∵四邊形ABCD是矩形,

∴∠OBF=∠OCF=30°,∠BFO=60°,

∴∠FOC=60°-30°=30°,

∴OF=CF,

又∵Rt△BOF中,BO=BD=AC=,

∴OF=tan30°×BO=1,

∴CF=1,

故答案為:1.【點睛】本題考查矩形的性質(zhì)以及解直角三角形的運(yùn)用,解題關(guān)鍵是掌握:矩形的對角線相等且互相平分.17、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機(jī)事件的概率.三、解答題(共7小題,滿分69分)18、(1)y=;(2);(3)<x<1.【解析】

(1)先利用矩形的性質(zhì)確定C點坐標(biāo)(1,4),再確定A點坐標(biāo)為(3,2),根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征得到k1=1,即反比例函數(shù)解析式為y=;(2)利用反比例函數(shù)解析式確定F點的坐標(biāo)為(1,1),E點坐標(biāo)為(,4),然后根據(jù)△OEF的面積=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF進(jìn)行計算;(3)觀察函數(shù)圖象得到當(dāng)<x<1時,一次函數(shù)圖象都在反比例函數(shù)圖象上方,即k2x+b>.【詳解】(1)∵四邊形DOBC是矩形,且點C的坐標(biāo)為(1,4),∴OB=1,OD=4,∵點A為線段OC的中點,∴A點坐標(biāo)為(3,2),∴k1=3×2=1,∴反比例函數(shù)解析式為y=;(2)把x=1代入y=得y=1,則F點的坐標(biāo)為(1,1);把y=4代入y=得x=,則E點坐標(biāo)為(,4),△OEF的面積=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)=;(3)由圖象得:不等式不等式k2x+b>的解集為<x<1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解即可.19、-2【解析】

先根據(jù)分式的混合運(yùn)算順序和運(yùn)算法則化簡原式,再選取使分式有意義的x的值代入計算可得.【詳解】原式===,∵x≠±1且x≠0,∴在-1≤x≤2中符合條件的x的值為x=2,則原式=-=-2.【點睛】此題考查分式的化簡求值,解題關(guān)鍵在于掌握運(yùn)算法則.20、(1)見解析;(2).【解析】

(1)連接OD,根據(jù)切線的判定方法即可求出答案;(2)由于OD∥AC,點O是AB的中點,從而可知OD為△ABC的中位線,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC?CE=4?1=3,在Rt△AEF中,所以EF=AE?sinA=3×sin60°=.【詳解】(1)連接OD,∵△ABC是等邊三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等邊三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切線(2)∵OD∥AC,點O是AB的中點,∴OD為△ABC的中位線,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE?sinA=3×sin60°=【點睛】本題考查圓的綜合問題,涉及切線的判定,銳角三角函數(shù),含30度角的直角三角形的性質(zhì),等邊三角形的性質(zhì),本題屬于中等題型.21、(1)詳見解析;(2)詳見解析;(3)【解析】

(1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;

(2)先判斷出OE=AC,即可得出OE=BD,即可得出結(jié)論;

(3)先判斷出△ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.【詳解】(1)∵AD=BD,

∴∠B=∠BAD,

∵AD=CD,

∴∠C=∠CAD,

在△ABC中,∠B+∠C+∠BAC=180°,

∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°

∴∠B+∠C=90°,

∴∠BAC=90°,(2)如圖②,連接與,交點為,連接四邊形是矩形(3)如圖3,過點做于點四邊形是矩形,是等邊三角形,由(2)知,在中,,【點睛】此題是四邊形綜合題,主要考查了矩形是性質(zhì),直角三角形的性質(zhì)和判定,含30°角的直角三角形的性質(zhì),三角形的內(nèi)角和公式,解(1)的關(guān)鍵是判斷出∠B=∠BAD,解(2)的關(guān)鍵是判斷出OE=AC,解(3)的關(guān)鍵是判斷出△ABE是底角為30°的等腰三角形,進(jìn)而構(gòu)造直角三角形.22、(1)本次一共調(diào)查了200名購買者;(2)補(bǔ)全的條形統(tǒng)計圖見解析,A種支付方式所對應(yīng)的圓心角為108;(3)使用A和B兩種支付方式的購買者共有928名.【解析】分析:(1)根據(jù)B的數(shù)量和所占的百分比可以求得本次調(diào)查的購買者的人數(shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得選擇A和D的人數(shù),從而可以將條形統(tǒng)計圖補(bǔ)充完整,求得在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角的度數(shù);(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出使用A和B兩種支付方式的購買者共有多少名.詳解:(1)56÷28%=200,即本次一共調(diào)查了200名購買者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),補(bǔ)全的條形統(tǒng)計圖如圖所示,在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為:360°×=108°,(3)1600×=928(名),答:使用A和B兩種支付方式的購買者共有928名.點睛:本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.23、(1)證明見解析;(2).【解析】

(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEAC?ΔDAF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論