江蘇省無錫市濱湖區(qū)重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第1頁
江蘇省無錫市濱湖區(qū)重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第2頁
江蘇省無錫市濱湖區(qū)重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第3頁
江蘇省無錫市濱湖區(qū)重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第4頁
江蘇省無錫市濱湖區(qū)重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省無錫市濱湖區(qū)重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)對點(diǎn)突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.﹣6的倒數(shù)是()A.﹣16 B.12.如圖是由5個(gè)大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.3.如圖1,在等邊△ABC中,D是BC的中點(diǎn),P為AB邊上的一個(gè)動(dòng)點(diǎn),設(shè)AP=x,圖1中線段DP的長為y,若表示y與x的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.4.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且?2≤x≤1時(shí),y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.15.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.6.如圖,點(diǎn)A、B、C、D在⊙O上,∠AOC=120°,點(diǎn)B是弧AC的中點(diǎn),則∠D的度數(shù)是()A.60° B.35° C.30.5° D.30°7.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的長是()A.3 B. C. D.8.已知A、B兩地之間鐵路長為450千米,動(dòng)車比火車每小時(shí)多行駛50千米,從A市到B市乘動(dòng)車比乘火車少用40分鐘,設(shè)動(dòng)車速度為每小時(shí)x千米,則可列方程為()A. B.C. D.9.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.10.下列四個(gè)圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在梯形中,,,點(diǎn)、分別是邊、的中點(diǎn).設(shè),,那么向量用向量表示是________.12.因式分解:y3﹣16y=_____.13.若代數(shù)式在實(shí)數(shù)范圍內(nèi)有意義,則實(shí)數(shù)x的取值范圍為_____.14.如圖,在平行四邊形中,點(diǎn)在邊上,將沿折疊得到,點(diǎn)落在對角線上.若,,,則的周長為________.15.分解因式:mx2﹣4m=_____.16.如圖,直線l1∥l2∥l3,直線AC分別交l1,l2,l3于點(diǎn)A,B,C;直線DF分別交l1,l2,l3于點(diǎn)D,E,F(xiàn).AC與DF相交于點(diǎn)H,且AH=2,HB=1,BC=5,則DEEF的值為17.如圖,以點(diǎn)O為圓心的兩個(gè)圓中,大圓的弦AB切小圓于點(diǎn)C,OA交小圓于點(diǎn)D,若OD=2,tan∠OAB=,則AB的長是________.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:()÷,其中a=+1.19.(5分)已知拋物線y=﹣x2﹣4x+c經(jīng)過點(diǎn)A(2,0).(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);(2)若點(diǎn)B(m,n)是拋物線上的一動(dòng)點(diǎn),點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C.①若B、C都在拋物線上,求m的值;②若點(diǎn)C在第四象限,當(dāng)AC2的值最小時(shí),求m的值.20.(8分)“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)21.(10分)如圖1,AB為半圓O的直徑,D為BA的延長線上一點(diǎn),DC為半圓O的切線,切點(diǎn)為C.(1)求證:∠ACD=∠B;(2)如圖2,∠BDC的平分線分別交AC,BC于點(diǎn)E,F(xiàn),求∠CEF的度數(shù).22.(10分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點(diǎn),延長DE到點(diǎn)F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當(dāng)∠ACB=60°時(shí),求證:四邊形BCFE是菱形.23.(12分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時(shí)秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當(dāng)秋千擺動(dòng)到最高點(diǎn)A時(shí),測得點(diǎn)A到BD的距離AC=2m,點(diǎn)A到地面的距離AE=1.8m;當(dāng)他從A處擺動(dòng)到A′處時(shí),有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.24.(14分)某翻譯團(tuán)為成為2022年冬奧會(huì)志愿者做準(zhǔn)備,該翻譯團(tuán)一共有五名翻譯,其中一名只會(huì)翻譯西班牙語,三名只會(huì)翻譯英語,還有一名兩種語言都會(huì)翻譯.求從這五名翻譯中隨機(jī)挑選一名會(huì)翻譯英語的概率;若從這五名翻譯中隨機(jī)挑選兩名組成一組,請用樹狀圖或列表的方法求該紐能夠翻譯上述兩種語言的概率.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】解:﹣6的倒數(shù)是﹣162、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點(diǎn):簡單組合體的三視圖.3、D【解析】分析:由圖1、圖2結(jié)合題意可知,當(dāng)DP⊥AB時(shí),DP最短,由此可得DP最短=y最小=,這樣如圖3,過點(diǎn)P作PD⊥AB于點(diǎn)P,連接AD,結(jié)合△ABC是等邊三角形和點(diǎn)D是BC邊的中點(diǎn)進(jìn)行分析解答即可.詳解:由題意可知:當(dāng)DP⊥AB時(shí),DP最短,由此可得DP最短=y最小=,如圖3,過點(diǎn)P作PD⊥AB于點(diǎn)P,連接AD,∵△ABC是等邊三角形,點(diǎn)D是BC邊上的中點(diǎn),∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點(diǎn)P,此時(shí)DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點(diǎn)睛:“讀懂題意,知道當(dāng)DP⊥AB于點(diǎn)P時(shí),DP最短=”是解答本題的關(guān)鍵.4、D【解析】

先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時(shí),y的最大值為9,可得x=1時(shí),y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-2a2a∵當(dāng)x≥2時(shí),y隨x的增大而增大,∴a>0,∵-2≤x≤1時(shí),y的最大值為9,∴x=1時(shí),y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-b2a,4ac-b24a),對稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當(dāng)a>0時(shí),拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時(shí),y隨x的增大而減?。粁>-b2a時(shí),y隨x的增大而增大;x=-b2a時(shí),y取得最小值4ac-b24a5、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結(jié)合無理數(shù)的定義進(jìn)行判斷即可得答案.【詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項(xiàng)錯(cuò)誤;B、0是有理數(shù),故本選項(xiàng)正確;C、是無理數(shù),故本選項(xiàng)錯(cuò)誤;D、是無理數(shù),故本選項(xiàng)錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關(guān)鍵.6、D【解析】

根據(jù)圓心角、弧、弦的關(guān)系定理得到∠AOB=∠AOC,再根據(jù)圓周角定理即可解答.【詳解】連接OB,∵點(diǎn)B是弧的中點(diǎn),∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點(diǎn)睛】此題考查了圓心角、弧、弦的關(guān)系定理,解題關(guān)鍵在于利用好圓周角定理.7、A【解析】根據(jù)銳角三角函數(shù)的性質(zhì),可知cosA==,然后根據(jù)AC=2,解方程可求得AB=3.故選A.點(diǎn)睛:此題主要考查了解直角三角形,解題關(guān)鍵是明確直角三角形中,余弦值cosA=,然后帶入數(shù)值即可求解.8、D【解析】解:設(shè)動(dòng)車速度為每小時(shí)x千米,則可列方程為:﹣=.故選D.9、B【解析】

首先解出各個(gè)不等式的解集,然后求出這些解集的公共部分即可.【詳解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式組無解,故選B.【點(diǎn)睛】解不等式組時(shí)要注意解集的確定原則:同大取大,同小取小,大小小大取中間,大大小小無解了.10、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點(diǎn)睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:根據(jù)梯形的中位線等于上底與下底和的一半表示出EF,然后根據(jù)向量的三角形法則解答即可.詳解:∵點(diǎn)E、F分別是邊AB、CD的中點(diǎn),∴EF是梯形ABCD的中位線,F(xiàn)C=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點(diǎn)睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵,本題還考查了梯形的中位線等于上底與下底和的一半.12、y(y+4)(y﹣4)【解析】試題解析:原式故答案為點(diǎn)睛:提取公因式法和公式法相結(jié)合因式分解.13、x≤1【解析】

根據(jù)二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點(diǎn)睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是利用被開方數(shù)是非負(fù)數(shù)解答即可.14、6.【解析】

先根據(jù)平行線的性質(zhì)求出BC=AD=5,再根據(jù)勾股定理可得AC=4,然后根據(jù)折疊的性質(zhì)可得AF=AB=3,EF=BE,從而可求出的周長.【詳解】解:∵四邊形是平行四邊形,∴BC=AD=5,∵,∴AC===4∵沿折疊得到,∴AF=AB=3,EF=BE,∴的周長=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案為6.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),勾股定理,折疊的性質(zhì),三角形的周長計(jì)算方法,運(yùn)用轉(zhuǎn)化思想是解題的關(guān)鍵.15、m(x+2)(x﹣2)【解析】

提取公因式法和公式法相結(jié)合因式分解即可.【詳解】原式故答案為【點(diǎn)睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關(guān)鍵.分解一定要徹底.16、3【解析】試題解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考點(diǎn):平行線分線段成比例.17、8【解析】

如圖,連接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解決問題.【詳解】解:如圖,連接OC.∵AB是⊙O切線,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案為8【點(diǎn)睛】本題考查切線的性質(zhì)、垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形,屬于中考常考題型.三、解答題(共7小題,滿分69分)18、,.【解析】

根據(jù)分式的減法和除法可以化簡題目中的式子,然后將a的值代入化簡后的式子即可解答本題.【詳解】解:()÷====,當(dāng)a=+1時(shí),原式==.【點(diǎn)睛】本題考查分式的化簡求值,解答本題的關(guān)鍵是明確分式化簡求值的方法.19、(1)拋物線解析式為y=﹣x2﹣4x+12,頂點(diǎn)坐標(biāo)為(﹣2,16);(2)①m=2或m=﹣2;②m的值為.【解析】分析:(1)把點(diǎn)A(2,0)代入拋物線y=﹣x2﹣4x+c中求得c的值,即可得拋物線的解析式,根據(jù)拋物線的解析式求得拋物線的頂點(diǎn)坐標(biāo)即可;(2)①由B(m,n)在拋物線上可得﹣m2﹣4m+12=n,再由點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C,可得點(diǎn)C的坐標(biāo)為(﹣m,﹣n),又因C落在拋物線上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知點(diǎn)C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由拋物線頂點(diǎn)坐標(biāo)為(﹣2,16),即可得0<n≤16,因?yàn)辄c(diǎn)B在拋物線上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以當(dāng)n=時(shí),AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可確定m的值.詳解:(1)∵拋物線y=﹣x2﹣4x+c經(jīng)過點(diǎn)A(2,0),∴﹣4﹣8+c=0,即c=12,∴拋物線解析式為y=﹣x2﹣4x+12=﹣(x+2)2+16,則頂點(diǎn)坐標(biāo)為(﹣2,16);(2)①由B(m,n)在拋物線上可得:﹣m2﹣4m+12=n,∵點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C,∴C(﹣m,﹣n),∵C落在拋物線上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵點(diǎn)C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,即m<0,n>0,∵拋物線頂點(diǎn)坐標(biāo)為(﹣2,16),∴0<n≤16,∵點(diǎn)B在拋物線上,∴﹣m2﹣4m+12=n,∴m2+4m=﹣n+12,∵A(2,0),C(﹣m,﹣n),∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,當(dāng)n=時(shí),AC2有最小值,∴﹣m2﹣4m+12=,解得:m=,∵m<0,∴m=不合題意,舍去,則m的值為.點(diǎn)睛:本題是二次函數(shù)綜合題,第(1)問較為簡單,第(2)問根據(jù)點(diǎn)B(m,n)關(guān)于原點(diǎn)的對稱點(diǎn)C(-m,-n)均在二次函數(shù)的圖象上,代入后即可求出m的值即可;(3)確定出AC2與n之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得當(dāng)n=時(shí),AC2有最小值,在解方程求得m的值即可.20、線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【解析】試題分析:在Rt△BED中可先求得BE的長,過C作CF⊥AE于點(diǎn)F,則可求得AF的長,從而可求得EF的長,即可求得CD的長.試題解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE?tan∠BDE≈18.75(cm),如圖,過C作AE的垂線,垂足為F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四邊形CDEF為矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,正確地添加輔助線構(gòu)造直角三角形是解題的關(guān)鍵.21、(1)詳見解析;(2)∠CEF=45°.【解析】試題分析:(1)連接OC,根據(jù)切線的性質(zhì)和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據(jù)等角的余角相等即可得出結(jié)論;(2)根據(jù)三角形的外角的性質(zhì)證明∠CEF=∠CFE即可求解.試題解析:(1)證明:如圖1中,連接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切線,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直徑,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.22、(1)見解析;(2)見解析【解析】

(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據(jù)菱形的判定證明即可.【詳解】(1)證明::∵D.E為AB,AC中點(diǎn)∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、菱形的判定、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考常考題型.23、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】

(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論