![800G光模塊白皮書_第1頁(yè)](http://file4.renrendoc.com/view14/M09/32/24/wKhkGWYTRsKAY30FAAIV7hvS5Zw572.jpg)
![800G光模塊白皮書_第2頁(yè)](http://file4.renrendoc.com/view14/M09/32/24/wKhkGWYTRsKAY30FAAIV7hvS5Zw5722.jpg)
![800G光模塊白皮書_第3頁(yè)](http://file4.renrendoc.com/view14/M09/32/24/wKhkGWYTRsKAY30FAAIV7hvS5Zw5723.jpg)
![800G光模塊白皮書_第4頁(yè)](http://file4.renrendoc.com/view14/M09/32/24/wKhkGWYTRsKAY30FAAIV7hvS5Zw5724.jpg)
![800G光模塊白皮書_第5頁(yè)](http://file4.renrendoc.com/view14/M09/32/24/wKhkGWYTRsKAY30FAAIV7hvS5Zw5725.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ENABLINGENABLINGTHETHENEXTNEXTGENERATIONGENERATION
OFOFCLOUDCLOUD&&AIAIUSINGUSING800GB/S800GB/S
OPTICALOPTICALMODULESMODULES
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
1.CloudExpansionSetsPacefor
OpticalModules
Cloudcomputingandstoragehavetakenoverasthetechnologicalbackbonetoamajorityofourmodernbusinessapplications
providinginfrastructure,platform,softwareorvirtuallyanythingasaservice,andtopersonalappliancescoveringphones,
laptopsandvarioussmartdevices.UnlikewirelessinfrastructureandstandardslikeLTEand5G,wherethestandardizationand
technologyareaheadoftheactualapplications,providinga“builditandtheywillcome”businessmodel,therapidandall-
encompassingexpansionofcloudapplicationsandservicesvigorouslypushesthedevelopmentofhigh-techelectronicsand
optics,whichoftenseemtorunbehindthepacesetbytheendusers.Theexponentialresourcegrowthofartificialintelligence
applicationsandtheinherentneedforhighbandwidthforthetransportofbigdataputsafurtherstrainondatacenter
architecturesandtheunderlyinginterconnects.Thus,thedeploymentsoftheAIcloud,aregainingmomentum.
Cloudapplications,AR/VR,AI,and5Gapplicationgeneratemoreandmoretraffic.Theexplosivegrowthoftrafficrequireshigher
bandwidth.AsshowninFigure1,globalinterconnectionbandwidthcapacitywillgrowata48%CAGRin2017-2021.
WORLDWIDEGROWTH
10,000(Tbps)
8,000CAGR:+48%
6,000
4,000
2,000
0
20172018201920202021
US.EUAPLATAM
Figure1–GlobalInterconnectionIndex(Source:Equinix)
AsshowninFigure2,marketanalystsareprojectingafirstadoptionof400GDatacommodulesin2020withalargeradoption
of2x400G/800Gmodulesin2022-23.
$7,000
$6,000
LIGHTCOUNTING
$5,000
$4,000
$3,000
Sales($M)
$2,000
$1,000
$-
20202021202220232024
100G200G400G2x400G
Figure2–Projectionofthemarketrevenuefordatacommodules(Source:LightCounting)
01www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
“OurLightCountingForecastmodelindicatesthatoperatorsofClouddatacenterswillneedtodeploy800Gopticsby2023-2024
tokeepupwiththegrowthofdatatraffic,”statedfounderandCEOofLightCountingMarketResearch,VladimirKozlov,PhD.
“Mostof800Gwillbestillpluggabletransceivers,butweexpecttoseesomeimplementationofco-packagedopticsaswell.”
DatacentercloudarchitecturesarebeingpacedbythecapacityscalingofswitchingASICs,whichisdoublingapproximately
everytwoyears,unfazedbythetalkabouttheendofMoore’sLaw.Today,12.8Tb/sEthernetswitchingchipsarebeing
commerciallydeployedwithfirstchipdesignfirmsalreadyprototyping25.6Tb/ssiliconfordeploymentnextyear,asshownin
Figure3.Thisputsfurtherpressureontothedensificationofopticalinterconnects,whichdonotscaleatthespeedofCMOSdue
tothelackofacommondesignmethodologyacrossthevariouscomponentsandacommonlargescaleprocess.
Inthepastfewyears,therapidexpansionofcloudserviceswasfueledbytherapidadoptionandpriceerosionof100Gshort
reachopticalmodulesbasedondirectdetectiontechnologyandnon-returntozero
(NRZ)modules.Afterthebeginningofthe400GbEBandwidthAssessmentactivity
inIEEEinMarch2011,initialdeploymentof400Gopticalmodulesisfinally
startingin2020withastrongerrampprojectedfor2021,asshowninFigure2.
Infact,intheinitialusecases,400Gmoduleswillbemainlyusedtotransport
4x100Gover500minDR4applicationand2x200GFR4opticsover2km,not
makinguseofthe400GbEMAC.Atthesametime,itseemsunlikelythat
IEEEwouldsoonstandardizethenextgenerationofoptics,suchas800GbE,
meaningthatthestandardizationofhigherdensityopticsforthetransportof
8x100GbEor2x400GbEforthe25.6Tb/sand51.2Tb/sswitchinggenerations
wouldbewellbehindactualmarkettimelinerequirementsof2021-22.This
raisestheneedfor800Gindustryinteroperabilityoutsideoftheestablished
standardbodies.
800G
QSFP112-DD&OSFP
400G32x@1U/64x@2U
QSFP56-DD&OSFP
32x@1U25.6T/51.2T
100GQSFP28
64x@2U12.8T256/512Lanes
100GQSFP28
32x@1U6.4T256Lanes
10GSerdes
40GQSFP+
32x@1U3.2T256Lanes25GSerdes
50GSedes
128Lanes
EthernetswitchingchipcapacityswitchingEthernet1.28T
100GSerdes
128Lanes
20132015201720192021-22
Figure3–Historicalevolutionofdatacenterswitchingchipcapacity
www.800G02
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
2.DataCenterArchitectures
Thehyperscaledatacentermarketisquitefragmentedwithrespecttotheuseddatacenterarchitecturesorthedemandfor
pluggableoptics.DatacentersforoperatorswithalargerexternalcustomerbaseofferingXaaSaremorelikelydominatedby
north-southclient-to-servertrafficandcouldhavemoresmallergeographicalclusters.Ontheotherhand,operatorswitha
largeinternaldemandforcloudcomputingandstorageseemoreeast-westtrafficbetweenserversandcouldoperatetheir
datacentersashugeclusterswithahigherradix.Evenincaseofsimilarusecases,theoperatorscandeployindividualflavorsof
networkarchitectureorhaveasubjectivepreferencetoacertaininterconnectssolutionsuchasPSM4orCWDM4orothercost-
downvariantsofthereof,suchas100GCWDM4-OCP.
Onecanderiveatleasttwomaintypesoftypicaldatacentersarchitectures.Figure4showsthecommonabstractionofahyper-
scaledatacenteranditsopticalinterconnectroadmap.Ingeneral,thesearchitecturesarelarger,haveacertainconvergence
fromlayertolayer,e.g.3:1,andrelyoncoherentZRinterconnectsattheSpinelayer.Animportantboundaryconstraintfor800G
networkinginthiscaseisthat200Ginterconnects,albeitnotserial,areusedattheservertoTORlayer,whereastheTOR-leaf/
spinelayerwouldtypicallyrelyonPSM44x200Ginafan-outconfiguration.
DC
TypicalOpticalmoduleevolution
Scenario4Scenario4100GQSFP28400GQ-DD800G
(DCI)DWDMZRZR
Spine.....
Scenario340GQSFP+100GQSFP28400GQ-DD800G
Scenario3(Spine-Leaf)eSR4/LR4CWDM4/PSM4DR4/FR4PSM4/FR4
.....
Leaf
Scenario240GQSFP+100GQSFP28400GQ-DD800G
Scenario2
(Leaf-TOR)SR4SR4/PSM4SR8/DR4PSM8/4
TOR.....
Scenario1Scenario110GSFP+25GSFP28100G200G
(TOR-Server)AOC/DACAOC/DACAOC/DACAOC
Server
2012201620192022
Figure4–Typicalhyperscaledatacenterinterconnectroadmap
Forthetypicalhyperscaledatacenternetwork(DCN),deploying200Gserverswillrequirean800Gfabric.It’satraffic
convergencenetwork,whichdependsonthebalancebetweenservicerequirementsandCapexoptimization.Table1showsthe
detailedreachrequirementsdependingontheDCNlayer.
03www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
Table1–DetailedrequirementsofthetypicalhyperscaleDCN
ScenarioServertoTORTORtoLeafLeaftoSpineDCI
Bandwidth200G800G800G800G
4mwithinrack;≥70m
Distance500m/2km80km-120km
20mcross-rack100mispreferred
ModulesizeQSFP-DD/OSFPQSFP-DD/OSFPQSFP-DD/OSFPQSFP-DD/OSFP
Figure5showsthedatacenternetworkarchitectureofanAIcluster,withlesslayersthanthehyperscalenetworkduetothe
factthatitlacksanyconvergencebetweenthelayers.ThedesignofanAIcloudimpliesdifferenttrafficflowswithmuchlarger
bigdataflowsandlessfrequentswitching.
.....
Spine
Opticalmodulerateevolution(AI/HPCCluster)
Scenario2
Scenario2
400GPSM4800GPSM8
(Spine-Leaf)
.....
Leaf
Scenario1
Scenario1
2*200GE2*400GE
(Leaf-Server)
Server
20192021
Figure5–AI/HPCopticalinterconnectroadmap
FortheAI/HPCclusterDCN,deploying400Gserverswillrequirean800Gfabric.ThisDCNdoesn’thaveanytrafficconvergence,
withfasterdeploymentthaninthecaseofFigure4.Table2showsthedetailedrequirements.
Table2–DetailedrequirementsoftheAI/HPCclusterDCN
ScenarioServertoLeafLeaftoSpine
Bandwidth400G800G
4mwithinrack;
Distance500m
20mcross-rack
ModulesizeQSFP-DD/OSFPQSFP-DD/OSFP
Latency92ns(IEEEPMAlayer)92ns(IEEEPMAlayer)
Notexplicitlyshown,butalsorelevant,areDCnetworksforsmallercloudorenterprises,wherethedownstreamtotheserveris
decoupledfromthefan-outratesoftheLeaf-Spinelayerandtypicallyhasslowerserverinterconnectspeeds.
www.800G04
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
3.8x100GSolutionforSRScenario
3.1800GSRscenariorequirementanalysis
Fortheclassof100m,theindustryisfacingthebasiclimitationsofVCSELsignalingatspeedsof100G/lane.Here,multi-mode
technologywilllikelyallowforreachesof30-50m,thusonlypartiallycoveringtheSRclass,whichisprimarilyemployedby
Chinesehyperscaledatacenteroperators.TheMSAtargetsthedevelopmentofalow-cost8x100GmoduleforSRapplications,
coveringthesweetspotof60-100m,asshowninFigure6.Particularly,theMSAisintendedtospecifyalowercosttransmitter
technologywiththepotentialtoleveragesub-linearcostscalingwithahighdegreeofintegration.Suchamodulewouldallow
foranearlytime-to-marketdense800Gsolution.Alowcost800GSR8couldalsosupportthepotentialtrendsofanincreasing
switchradixanddecreasingservercount-per-rack,whichmaycombinetofavormiddle-of-the-rack(MoR)andend-of-the-
rack(EoR)ortop-of-the-rack(ToR)architectures,byprovidingalowcostserial100Gserverinterconnect.AsshowninFigure
6,theMSAwilldefinealowercostPMDforsinglemodefiberinterconnectsbasedon100GPAM4.Duetothelowlatency
requirementsofSRapplications,KP4forwarderrorcorrection(FEC)willbeusedend-to-endwithasimpleclockrecoveryand
dataequalizationunitinthemodule.Finally,theMSAwillspecifyaconnectorforthePSM8moduleswhichenablesafan-out
to8x100G.
MACANDHIGHERLAYERS
RECONCILIATION
8x100G
400GMII400GMII
400GBASE-R400GBASE-R
PCSPCS
DSP
PMAPMA
400GAUI-4C2M400GAUI-4C2M
PMAPMA
800GMSA
PMDPMD
MEDIUMMEDIUM8x100G
PSM8
Figure6–800GSR8blockdiagrams
3.2TechnicalFeasibilityof8x100Gsolutions
Asmentionedabove,signalingrateupto100Gperlanemaylimittheevolvementofmulti-modefiber(MMF)basedsolution
from400G-SR8to800G-SR8.BasedonthetheoreticalmodelusedinIEEE,wecanreckonthatthetransmissiondistancethat
MMFcansupportisnomorethan50masthebaudrateupto50G(SeeTable3).Thelimitationfactorsarefromthelimited
bandwidthofVCSELandthemodaldispersionofMMF.Withtheoptimizationindevices,fibermediumaswellasenhanced
DSPalgorithms,100mMMFtransmissionmayberealizedatthecostofhigherexpense,higherlatency,andlargerpower
consumption.Hence,in800GPluggableMSA,werecommendthatthe800G-SR8scenarioistakenoverbySMFbasedsolution.
05www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
Table3–FiberchannelbandwidthandtransmissiondistanceofMMFreckonedbythetheoreticalmodelusedinIEEE
Fiberchannel
Transmission
BitrateSignalTypeFiberTypebandwidthIEEEstandards
Distance(m)
(GHz?km)
50GbpsPAM4OM42.301100m50G-SR,100G-SR2
200G-SR4,400G-
50GbpsPAM4OM31.54170mSR8
100GbpsPAM4OM4/OM52.301/2.37750mDefinednow
100GbpsPAM4OM31.54135m-
InordertoguaranteetheadvantagesonthecostandpowerconsumptionoftheSMFbasedsolution,reasonablePMD
standardrequirementsareindispensablein800G-SR8.ThePMDrequirementstobedefinedshouldensurethat1)diverse
transmittertechniques,suchasDML,EML,andsiliconphotonics(SiPh),canbeappliedinsuchscenario;2)allthepotentialof
thecomponentscanbereleasedadequatelytoachievethetargetinglinkperformance;3)keyparametersinPMDlayersshould
berelaxedasmuchaspossible,inthecontextofmaintainingareliablelinkperformance.Accordingtothesethreeprinciples,we
willconductsomebriefinvestigationsanddiscussionsasfollows.
ThepowerbudgetoftheSMFbased800G-SR8solutionwouldbequitesimilarwiththatdefinedinIEEE400G-SR8.Theonly
issuetobedeterminedistheinsertionlossofnewdefinedPSM8SMFconnectors.ItmeansthatthepowerbudgetinSR
scenariocanbeachievedwithoutahitchbasedoncurrentlymatureopticalandelectroniccomponentsandDSPASICsused
in400GEopticalinterconnection.Therefore,apartfromspecifyingtheconnectorforthePSM8modules,thekeyissueforthe
definitionofPMDparametersin800SR8scenarioistofindoutthesuitableopticalmodulationamplitude(OMA),extinction
ratio(ER),transmitterdispersioneyeclosurequaternary(TDECQ)ofthetransmitterandsensitivityofreceiver.Inordertoset
theseparametersintothesuitableposition,thebiterrorration(BER)performanceofthediversetransmittersisinvestigatedand
assessed.
EMLBERvs.OMASiPh.BERvs.OMADMLBERvs.OMA
1.00E-021.00E-021.00E-02
1.00E-031.00E-031.00E-03
1.00E-041.00E-041.00E-04
1.00E-051.00E-051.00E-05
BER1.00E-06BER1.00E-06BER1.00E-06
1.00E-071.00E-071.00E-07
FEC:KP4FEC:KP4FEC:KP4
1.00E-081.00E-081.00E-08
EMLonlinetestresultSiPh.onlinetestresultDMLonlinetestresult
1.00E-091.00E-091.00E-09
-10-8-6-4-202-10-8-6-4-202-10-8-6-4-202
OMA(dBm)OMA(dBm)OMA(dBm)
(a)(b)(c)
Figure7–(a)EMLBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs;(b)SiliconPhotonicsBERvs.OMAresults
basedoncommercialavailable400GDSPASICs,(c)DMLBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs
Figure7showsthreeBERvsOMAcurvesof100GbpsPAM4signal,whichcorrespondtodifferenttransmittertechnologies
respectively,asonlineresultsandobtainedusingcommercial400GDSPASICs.Actually,theBERperformancesofEMLandSiPh
for100GperlaneillustratedinFigure7(a)and(b)arewell-knownresultssincethesetwosolutionshavebeenextensively
discussedinthepastfewyears.ConsideringrelativelylowlaunchingopticalpowerofSiPhtransmitterandgoodenough
sensitivityofallthreesolutions,theminimumOMArequirementin800G-SR8isrecommendedtoberelaxedappropriately.
www.800G06
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
TheBERperformanceoftheDMLinFigure7(c)showsthattheOMAsensitivityinthiscaseiscomparablewiththatinthecase
ofEMLorSiPh,eventhoughthecommercialDMLusedinherehasrelativelylowerbandwidththanEMLandSiPh.Thisresult
impliesthatthecommercialDSPASICsusedinpracticehavemuchstrongerequalizationabilitythanthereferencereceiverIEEE
definedin400GE,andthusitcansupportthetransmitterwithcomparativelylowbandwidthtoachievethetargetingpower
budget800G-SRrequired.InordertoreleasethepotentialoftheDSPunitadequatelyfor800GSR8PMD,referencereceiverfor
compliancetest(i.e.TDECQ)requirestobere-definedtomatchthepracticalequalizationabilityofcommercialDSPs,i.e.more
tapsnumbersthancurrentlydefined5tapsaredesired.Meanwhile,consideringtherelativelylowsensitivityrequirementinSR
scenarioandrestrictionofthepowerconsumptionofthe800Gmodule,alowcomplexityDSPmodeisrecommendedinfuture
modules.AnotherkeyparameterisERthatisrelatedtothepowerconsumptiondirectly.AlowerERisfavoredaslongasitdoes
notimpactthereliabilityofthelink.Basedontheaboveanalysis,webelievethatalowcostandpowerconsumptionSMF-
basedsolutionisfeasibleandpromisingin800G-SR8scenario.
4.4x200GSolutionforFRScenario
4.1800GFRscenariorequirementanalysis
200GperlanePAM4technologyisthenextmajortechnologicalstepforopticalintensitymodulated,directdetection
interconnectsandwillbethefoundationfora4-lane800Gconnectivity,aswellasanessentialbuildingblockforfuture1.6Tb/
sinterconnects.AsshowninFigure8,theMSAwilldefinethefullPMDandpartialPMAlayersincludinganewlowpower,low
latencyFECasawrapperontopoftheKP4FECofthe112Gelectricalinputsignals,inordertoimprovethenetcodinggain
(NCG)ofthemodem.Oneofthekeygoalsofthisindustryalliancewillbethedevelopmentofnewwidebandwidthelectrical
andopticalanalogcomponentsforthetransmitterandreceiverassembliesincludingdigital-to-analogandanalog-to-digital(AD/
DA)converters.Inordertoachievetheaggressivepowerenveloptargetsofpluggablemodules,theDSPchipswillbedesigned
inCMOSprocesswithlowernmnodeandemploylowpowersignalprocessingalgorithmstoachieveequalizationofthechannel.
MACANDHIGHERLAYERS
RECONCILIATION
8x112G8x112G
400GMII400GMII
400GBASE-R400GBASE-R
PCSPCS
DSPDSP
PMAPMA
400GAUI-4C2M400GAUI-4C2M1234
PMAPMAMux
800GMSA
PMD
MEDIUM
NewPMD4x224G4x224G
PSM4CWDM4
Figure8–800GFR4/PSM4blockdiagrams
07
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《理解成語(yǔ)的方法》課件
- 《教師演示技能》課件
- 《骨骼系統(tǒng)MRI袁飛》課件
- 《中長(zhǎng)鏈脂肪乳》課件
- 三年級(jí)語(yǔ)文作文指導(dǎo)課-我愛(ài)吃的水果課件
- 確定合同完成進(jìn)度的方法
- 探索本科理科研究
- 強(qiáng)化“五個(gè)認(rèn)同”筑牢新時(shí)代內(nèi)蒙古民族團(tuán)結(jié)基石
- 快速制作網(wǎng)頁(yè)的方法
- 2025年皮革、毛皮及其制品加工專用設(shè)備項(xiàng)目發(fā)展計(jì)劃
- 2025年寬帶研究分析報(bào)告
- 建筑與市政工程第三方質(zhì)量安全巡查方案
- 多元化票務(wù)系統(tǒng)設(shè)計(jì)-深度研究
- 二零二五版財(cái)務(wù)顧問(wèn)保密與工作內(nèi)容協(xié)議3篇
- 2025-2030年中國(guó)干混砂漿行業(yè)運(yùn)行狀況及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2024年菏澤職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- GB/T 22180-2024速凍裹衣魚
- 2025江蘇鹽城市交通投資建設(shè)控股集團(tuán)限公司招聘19人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024托管班二人合伙的協(xié)議書
- 《輸電線路金具識(shí)別》課件
- 基于PLC的豬場(chǎng)智能液態(tài)飼喂系統(tǒng)的設(shè)計(jì)與研究
評(píng)論
0/150
提交評(píng)論