




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ENABLINGENABLINGTHETHENEXTNEXTGENERATIONGENERATION
OFOFCLOUDCLOUD&&AIAIUSINGUSING800GB/S800GB/S
OPTICALOPTICALMODULESMODULES
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
1.CloudExpansionSetsPacefor
OpticalModules
Cloudcomputingandstoragehavetakenoverasthetechnologicalbackbonetoamajorityofourmodernbusinessapplications
providinginfrastructure,platform,softwareorvirtuallyanythingasaservice,andtopersonalappliancescoveringphones,
laptopsandvarioussmartdevices.UnlikewirelessinfrastructureandstandardslikeLTEand5G,wherethestandardizationand
technologyareaheadoftheactualapplications,providinga“builditandtheywillcome”businessmodel,therapidandall-
encompassingexpansionofcloudapplicationsandservicesvigorouslypushesthedevelopmentofhigh-techelectronicsand
optics,whichoftenseemtorunbehindthepacesetbytheendusers.Theexponentialresourcegrowthofartificialintelligence
applicationsandtheinherentneedforhighbandwidthforthetransportofbigdataputsafurtherstrainondatacenter
architecturesandtheunderlyinginterconnects.Thus,thedeploymentsoftheAIcloud,aregainingmomentum.
Cloudapplications,AR/VR,AI,and5Gapplicationgeneratemoreandmoretraffic.Theexplosivegrowthoftrafficrequireshigher
bandwidth.AsshowninFigure1,globalinterconnectionbandwidthcapacitywillgrowata48%CAGRin2017-2021.
WORLDWIDEGROWTH
10,000(Tbps)
8,000CAGR:+48%
6,000
4,000
2,000
0
20172018201920202021
US.EUAPLATAM
Figure1–GlobalInterconnectionIndex(Source:Equinix)
AsshowninFigure2,marketanalystsareprojectingafirstadoptionof400GDatacommodulesin2020withalargeradoption
of2x400G/800Gmodulesin2022-23.
$7,000
$6,000
LIGHTCOUNTING
$5,000
$4,000
$3,000
Sales($M)
$2,000
$1,000
$-
20202021202220232024
100G200G400G2x400G
Figure2–Projectionofthemarketrevenuefordatacommodules(Source:LightCounting)
01www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
“OurLightCountingForecastmodelindicatesthatoperatorsofClouddatacenterswillneedtodeploy800Gopticsby2023-2024
tokeepupwiththegrowthofdatatraffic,”statedfounderandCEOofLightCountingMarketResearch,VladimirKozlov,PhD.
“Mostof800Gwillbestillpluggabletransceivers,butweexpecttoseesomeimplementationofco-packagedopticsaswell.”
DatacentercloudarchitecturesarebeingpacedbythecapacityscalingofswitchingASICs,whichisdoublingapproximately
everytwoyears,unfazedbythetalkabouttheendofMoore’sLaw.Today,12.8Tb/sEthernetswitchingchipsarebeing
commerciallydeployedwithfirstchipdesignfirmsalreadyprototyping25.6Tb/ssiliconfordeploymentnextyear,asshownin
Figure3.Thisputsfurtherpressureontothedensificationofopticalinterconnects,whichdonotscaleatthespeedofCMOSdue
tothelackofacommondesignmethodologyacrossthevariouscomponentsandacommonlargescaleprocess.
Inthepastfewyears,therapidexpansionofcloudserviceswasfueledbytherapidadoptionandpriceerosionof100Gshort
reachopticalmodulesbasedondirectdetectiontechnologyandnon-returntozero
(NRZ)modules.Afterthebeginningofthe400GbEBandwidthAssessmentactivity
inIEEEinMarch2011,initialdeploymentof400Gopticalmodulesisfinally
startingin2020withastrongerrampprojectedfor2021,asshowninFigure2.
Infact,intheinitialusecases,400Gmoduleswillbemainlyusedtotransport
4x100Gover500minDR4applicationand2x200GFR4opticsover2km,not
makinguseofthe400GbEMAC.Atthesametime,itseemsunlikelythat
IEEEwouldsoonstandardizethenextgenerationofoptics,suchas800GbE,
meaningthatthestandardizationofhigherdensityopticsforthetransportof
8x100GbEor2x400GbEforthe25.6Tb/sand51.2Tb/sswitchinggenerations
wouldbewellbehindactualmarkettimelinerequirementsof2021-22.This
raisestheneedfor800Gindustryinteroperabilityoutsideoftheestablished
standardbodies.
800G
QSFP112-DD&OSFP
400G32x@1U/64x@2U
QSFP56-DD&OSFP
32x@1U25.6T/51.2T
100GQSFP28
64x@2U12.8T256/512Lanes
100GQSFP28
32x@1U6.4T256Lanes
10GSerdes
40GQSFP+
32x@1U3.2T256Lanes25GSerdes
50GSedes
128Lanes
EthernetswitchingchipcapacityswitchingEthernet1.28T
100GSerdes
128Lanes
20132015201720192021-22
Figure3–Historicalevolutionofdatacenterswitchingchipcapacity
www.800G02
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
2.DataCenterArchitectures
Thehyperscaledatacentermarketisquitefragmentedwithrespecttotheuseddatacenterarchitecturesorthedemandfor
pluggableoptics.DatacentersforoperatorswithalargerexternalcustomerbaseofferingXaaSaremorelikelydominatedby
north-southclient-to-servertrafficandcouldhavemoresmallergeographicalclusters.Ontheotherhand,operatorswitha
largeinternaldemandforcloudcomputingandstorageseemoreeast-westtrafficbetweenserversandcouldoperatetheir
datacentersashugeclusterswithahigherradix.Evenincaseofsimilarusecases,theoperatorscandeployindividualflavorsof
networkarchitectureorhaveasubjectivepreferencetoacertaininterconnectssolutionsuchasPSM4orCWDM4orothercost-
downvariantsofthereof,suchas100GCWDM4-OCP.
Onecanderiveatleasttwomaintypesoftypicaldatacentersarchitectures.Figure4showsthecommonabstractionofahyper-
scaledatacenteranditsopticalinterconnectroadmap.Ingeneral,thesearchitecturesarelarger,haveacertainconvergence
fromlayertolayer,e.g.3:1,andrelyoncoherentZRinterconnectsattheSpinelayer.Animportantboundaryconstraintfor800G
networkinginthiscaseisthat200Ginterconnects,albeitnotserial,areusedattheservertoTORlayer,whereastheTOR-leaf/
spinelayerwouldtypicallyrelyonPSM44x200Ginafan-outconfiguration.
DC
TypicalOpticalmoduleevolution
Scenario4Scenario4100GQSFP28400GQ-DD800G
(DCI)DWDMZRZR
Spine.....
Scenario340GQSFP+100GQSFP28400GQ-DD800G
Scenario3(Spine-Leaf)eSR4/LR4CWDM4/PSM4DR4/FR4PSM4/FR4
.....
Leaf
Scenario240GQSFP+100GQSFP28400GQ-DD800G
Scenario2
(Leaf-TOR)SR4SR4/PSM4SR8/DR4PSM8/4
TOR.....
Scenario1Scenario110GSFP+25GSFP28100G200G
(TOR-Server)AOC/DACAOC/DACAOC/DACAOC
Server
2012201620192022
Figure4–Typicalhyperscaledatacenterinterconnectroadmap
Forthetypicalhyperscaledatacenternetwork(DCN),deploying200Gserverswillrequirean800Gfabric.It’satraffic
convergencenetwork,whichdependsonthebalancebetweenservicerequirementsandCapexoptimization.Table1showsthe
detailedreachrequirementsdependingontheDCNlayer.
03www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
Table1–DetailedrequirementsofthetypicalhyperscaleDCN
ScenarioServertoTORTORtoLeafLeaftoSpineDCI
Bandwidth200G800G800G800G
4mwithinrack;≥70m
Distance500m/2km80km-120km
20mcross-rack100mispreferred
ModulesizeQSFP-DD/OSFPQSFP-DD/OSFPQSFP-DD/OSFPQSFP-DD/OSFP
Figure5showsthedatacenternetworkarchitectureofanAIcluster,withlesslayersthanthehyperscalenetworkduetothe
factthatitlacksanyconvergencebetweenthelayers.ThedesignofanAIcloudimpliesdifferenttrafficflowswithmuchlarger
bigdataflowsandlessfrequentswitching.
.....
Spine
Opticalmodulerateevolution(AI/HPCCluster)
Scenario2
Scenario2
400GPSM4800GPSM8
(Spine-Leaf)
.....
Leaf
Scenario1
Scenario1
2*200GE2*400GE
(Leaf-Server)
Server
20192021
Figure5–AI/HPCopticalinterconnectroadmap
FortheAI/HPCclusterDCN,deploying400Gserverswillrequirean800Gfabric.ThisDCNdoesn’thaveanytrafficconvergence,
withfasterdeploymentthaninthecaseofFigure4.Table2showsthedetailedrequirements.
Table2–DetailedrequirementsoftheAI/HPCclusterDCN
ScenarioServertoLeafLeaftoSpine
Bandwidth400G800G
4mwithinrack;
Distance500m
20mcross-rack
ModulesizeQSFP-DD/OSFPQSFP-DD/OSFP
Latency92ns(IEEEPMAlayer)92ns(IEEEPMAlayer)
Notexplicitlyshown,butalsorelevant,areDCnetworksforsmallercloudorenterprises,wherethedownstreamtotheserveris
decoupledfromthefan-outratesoftheLeaf-Spinelayerandtypicallyhasslowerserverinterconnectspeeds.
www.800G04
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
3.8x100GSolutionforSRScenario
3.1800GSRscenariorequirementanalysis
Fortheclassof100m,theindustryisfacingthebasiclimitationsofVCSELsignalingatspeedsof100G/lane.Here,multi-mode
technologywilllikelyallowforreachesof30-50m,thusonlypartiallycoveringtheSRclass,whichisprimarilyemployedby
Chinesehyperscaledatacenteroperators.TheMSAtargetsthedevelopmentofalow-cost8x100GmoduleforSRapplications,
coveringthesweetspotof60-100m,asshowninFigure6.Particularly,theMSAisintendedtospecifyalowercosttransmitter
technologywiththepotentialtoleveragesub-linearcostscalingwithahighdegreeofintegration.Suchamodulewouldallow
foranearlytime-to-marketdense800Gsolution.Alowcost800GSR8couldalsosupportthepotentialtrendsofanincreasing
switchradixanddecreasingservercount-per-rack,whichmaycombinetofavormiddle-of-the-rack(MoR)andend-of-the-
rack(EoR)ortop-of-the-rack(ToR)architectures,byprovidingalowcostserial100Gserverinterconnect.AsshowninFigure
6,theMSAwilldefinealowercostPMDforsinglemodefiberinterconnectsbasedon100GPAM4.Duetothelowlatency
requirementsofSRapplications,KP4forwarderrorcorrection(FEC)willbeusedend-to-endwithasimpleclockrecoveryand
dataequalizationunitinthemodule.Finally,theMSAwillspecifyaconnectorforthePSM8moduleswhichenablesafan-out
to8x100G.
MACANDHIGHERLAYERS
RECONCILIATION
8x100G
400GMII400GMII
400GBASE-R400GBASE-R
PCSPCS
DSP
PMAPMA
400GAUI-4C2M400GAUI-4C2M
PMAPMA
800GMSA
PMDPMD
MEDIUMMEDIUM8x100G
PSM8
Figure6–800GSR8blockdiagrams
3.2TechnicalFeasibilityof8x100Gsolutions
Asmentionedabove,signalingrateupto100Gperlanemaylimittheevolvementofmulti-modefiber(MMF)basedsolution
from400G-SR8to800G-SR8.BasedonthetheoreticalmodelusedinIEEE,wecanreckonthatthetransmissiondistancethat
MMFcansupportisnomorethan50masthebaudrateupto50G(SeeTable3).Thelimitationfactorsarefromthelimited
bandwidthofVCSELandthemodaldispersionofMMF.Withtheoptimizationindevices,fibermediumaswellasenhanced
DSPalgorithms,100mMMFtransmissionmayberealizedatthecostofhigherexpense,higherlatency,andlargerpower
consumption.Hence,in800GPluggableMSA,werecommendthatthe800G-SR8scenarioistakenoverbySMFbasedsolution.
05www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
Table3–FiberchannelbandwidthandtransmissiondistanceofMMFreckonedbythetheoreticalmodelusedinIEEE
Fiberchannel
Transmission
BitrateSignalTypeFiberTypebandwidthIEEEstandards
Distance(m)
(GHz?km)
50GbpsPAM4OM42.301100m50G-SR,100G-SR2
200G-SR4,400G-
50GbpsPAM4OM31.54170mSR8
100GbpsPAM4OM4/OM52.301/2.37750mDefinednow
100GbpsPAM4OM31.54135m-
InordertoguaranteetheadvantagesonthecostandpowerconsumptionoftheSMFbasedsolution,reasonablePMD
standardrequirementsareindispensablein800G-SR8.ThePMDrequirementstobedefinedshouldensurethat1)diverse
transmittertechniques,suchasDML,EML,andsiliconphotonics(SiPh),canbeappliedinsuchscenario;2)allthepotentialof
thecomponentscanbereleasedadequatelytoachievethetargetinglinkperformance;3)keyparametersinPMDlayersshould
berelaxedasmuchaspossible,inthecontextofmaintainingareliablelinkperformance.Accordingtothesethreeprinciples,we
willconductsomebriefinvestigationsanddiscussionsasfollows.
ThepowerbudgetoftheSMFbased800G-SR8solutionwouldbequitesimilarwiththatdefinedinIEEE400G-SR8.Theonly
issuetobedeterminedistheinsertionlossofnewdefinedPSM8SMFconnectors.ItmeansthatthepowerbudgetinSR
scenariocanbeachievedwithoutahitchbasedoncurrentlymatureopticalandelectroniccomponentsandDSPASICsused
in400GEopticalinterconnection.Therefore,apartfromspecifyingtheconnectorforthePSM8modules,thekeyissueforthe
definitionofPMDparametersin800SR8scenarioistofindoutthesuitableopticalmodulationamplitude(OMA),extinction
ratio(ER),transmitterdispersioneyeclosurequaternary(TDECQ)ofthetransmitterandsensitivityofreceiver.Inordertoset
theseparametersintothesuitableposition,thebiterrorration(BER)performanceofthediversetransmittersisinvestigatedand
assessed.
EMLBERvs.OMASiPh.BERvs.OMADMLBERvs.OMA
1.00E-021.00E-021.00E-02
1.00E-031.00E-031.00E-03
1.00E-041.00E-041.00E-04
1.00E-051.00E-051.00E-05
BER1.00E-06BER1.00E-06BER1.00E-06
1.00E-071.00E-071.00E-07
FEC:KP4FEC:KP4FEC:KP4
1.00E-081.00E-081.00E-08
EMLonlinetestresultSiPh.onlinetestresultDMLonlinetestresult
1.00E-091.00E-091.00E-09
-10-8-6-4-202-10-8-6-4-202-10-8-6-4-202
OMA(dBm)OMA(dBm)OMA(dBm)
(a)(b)(c)
Figure7–(a)EMLBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs;(b)SiliconPhotonicsBERvs.OMAresults
basedoncommercialavailable400GDSPASICs,(c)DMLBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs
Figure7showsthreeBERvsOMAcurvesof100GbpsPAM4signal,whichcorrespondtodifferenttransmittertechnologies
respectively,asonlineresultsandobtainedusingcommercial400GDSPASICs.Actually,theBERperformancesofEMLandSiPh
for100GperlaneillustratedinFigure7(a)and(b)arewell-knownresultssincethesetwosolutionshavebeenextensively
discussedinthepastfewyears.ConsideringrelativelylowlaunchingopticalpowerofSiPhtransmitterandgoodenough
sensitivityofallthreesolutions,theminimumOMArequirementin800G-SR8isrecommendedtoberelaxedappropriately.
www.800G06
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
TheBERperformanceoftheDMLinFigure7(c)showsthattheOMAsensitivityinthiscaseiscomparablewiththatinthecase
ofEMLorSiPh,eventhoughthecommercialDMLusedinherehasrelativelylowerbandwidththanEMLandSiPh.Thisresult
impliesthatthecommercialDSPASICsusedinpracticehavemuchstrongerequalizationabilitythanthereferencereceiverIEEE
definedin400GE,andthusitcansupportthetransmitterwithcomparativelylowbandwidthtoachievethetargetingpower
budget800G-SRrequired.InordertoreleasethepotentialoftheDSPunitadequatelyfor800GSR8PMD,referencereceiverfor
compliancetest(i.e.TDECQ)requirestobere-definedtomatchthepracticalequalizationabilityofcommercialDSPs,i.e.more
tapsnumbersthancurrentlydefined5tapsaredesired.Meanwhile,consideringtherelativelylowsensitivityrequirementinSR
scenarioandrestrictionofthepowerconsumptionofthe800Gmodule,alowcomplexityDSPmodeisrecommendedinfuture
modules.AnotherkeyparameterisERthatisrelatedtothepowerconsumptiondirectly.AlowerERisfavoredaslongasitdoes
notimpactthereliabilityofthelink.Basedontheaboveanalysis,webelievethatalowcostandpowerconsumptionSMF-
basedsolutionisfeasibleandpromisingin800G-SR8scenario.
4.4x200GSolutionforFRScenario
4.1800GFRscenariorequirementanalysis
200GperlanePAM4technologyisthenextmajortechnologicalstepforopticalintensitymodulated,directdetection
interconnectsandwillbethefoundationfora4-lane800Gconnectivity,aswellasanessentialbuildingblockforfuture1.6Tb/
sinterconnects.AsshowninFigure8,theMSAwilldefinethefullPMDandpartialPMAlayersincludinganewlowpower,low
latencyFECasawrapperontopoftheKP4FECofthe112Gelectricalinputsignals,inordertoimprovethenetcodinggain
(NCG)ofthemodem.Oneofthekeygoalsofthisindustryalliancewillbethedevelopmentofnewwidebandwidthelectrical
andopticalanalogcomponentsforthetransmitterandreceiverassembliesincludingdigital-to-analogandanalog-to-digital(AD/
DA)converters.Inordertoachievetheaggressivepowerenveloptargetsofpluggablemodules,theDSPchipswillbedesigned
inCMOSprocesswithlowernmnodeandemploylowpowersignalprocessingalgorithmstoachieveequalizationofthechannel.
MACANDHIGHERLAYERS
RECONCILIATION
8x112G8x112G
400GMII400GMII
400GBASE-R400GBASE-R
PCSPCS
DSPDSP
PMAPMA
400GAUI-4C2M400GAUI-4C2M1234
PMAPMAMux
800GMSA
PMD
MEDIUM
NewPMD4x224G4x224G
PSM4CWDM4
Figure8–800GFR4/PSM4blockdiagrams
07
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025婚紗攝影工作室合作合同范本
- 2025水果銷售居間合同
- 2025工程采購合同范本
- 2025聘請家庭保姆合同范本
- 2025寫字樓租賃合同書范文
- 2025年進出口貿(mào)易合同范本
- 2025成都市土地流轉(zhuǎn)合同
- 8.1《薪火相傳的傳統(tǒng)美德》教案 2024-2025學年統(tǒng)編版道德與法治七年級下冊
- 《電子書下載流程》課件
- 《胃癌內(nèi)科治療》課件
- 森林病蟲害防治自測練習試題與答案
- GB/T 3728-1991工業(yè)乙酸乙酯
- GB/T 34949-2017實時數(shù)據(jù)庫C語言接口規(guī)范
- GB/T 3452.1-2005液壓氣動用O形橡膠密封圈第1部分:尺寸系列及公差
- GB/T 23641-2018電氣用纖維增強不飽和聚酯模塑料(SMC/BMC)
- 2023年國際焊接工程師考試IWE結(jié)構(gòu)試題
- 精華版-趙武靈王胡服騎射課件
- 《高等教育心理學》《高等教育學》樣題
- 高等學校英語應(yīng)用能力考試〔B級〕真題及答案
- 高三(5)高考沖刺家長會課件
- 頂板安全管理知識
評論
0/150
提交評論