儲能系統(tǒng)的比較研究_第1頁
儲能系統(tǒng)的比較研究_第2頁
儲能系統(tǒng)的比較研究_第3頁
儲能系統(tǒng)的比較研究_第4頁
儲能系統(tǒng)的比較研究_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

JournalofPhysics:ConferenceSeries

PAPER?OPENACCESS

ComparativeStudyofEnergyStorageSystems(ESSs)

Tocitethisarticle:LIMAsrietal2021J.Phys.:Conf.Ser.1962012035

Viewthe

articleonline

forupdatesandenhancements.

Youmayalsolike

FoodCodeBreaker(FCB)–Developing

theMulti-LingualFoodCodeTranslation

AndroidApplicationUsingMulti–Options

CodeReaderSystem

SharminiAbdullah,MohamedElshaikh,MuhammadBazliMahmoodetal.

OptimizationofAnthraquinoneDye

WastewaterTreatmentusingOzoneinthe

PresenceofPersulfateIoninaSemi-

batchReactor

NAMHussin,CZAAbidin,Fahmietal.

Mechanical,DurabilityAndRheology

PropertiesOfUltraHighPerformance

Concrete(UHPC)WithLowCement

Content

MZAMZahid,BHABakar,FMNazrietal.

ThiscontentwasdownloadedfromIPaddress53on09/04/2024at00:29

The1stInternationalConferenceonEngineeringandTechnology(ICoEngTech)2021 IOPPublishing

JournalofPhysics:ConferenceSeries

1962(2021)012035

doi:10.1088/1742-6596/1962/1/012035

ComparativeStudyofEnergyStorageSystems(ESSs)

LIMAsri,WNSFWAriffin,ASMZain,JNordinandNSSaad

FacultyofElectronicEngineeringTechnology,UniversitiMalaysiaPerlis,02600Arau,Malaysia

E-mail:

lyana6060@,

suryanifiruz@.my,

ainisyuhada@.my,

junita@.my,

nazatul@.my

Abstract.Renewableenergy(RE)resourceshaveshownimpressivegrowthglobally,asthesesourcesdonotprovideenoughamountthatisreadilyadaptabletoconsumerneeds,itcanrarelyallowanimmediateresponsetodemand.However,intermittencyinREsupply(RES)sources,combinedwithfluctuatingdemandshiftsovertime,hascausedahighriskofsustainingsystemreliabilitytoprovidecustomerswithsufficientsupply.TheexcessenergyproducedbyRESscanbestoredinamyriadofwaysandusedlaterduringshortagesorintermittentperiods.ThisstudywascarriedouttounderstandhowtoprovideenergystoragetocreateafuturebuiltenvironmentwhereREsystemsplayanessentialrole.Therearedifferenttypesofastoragesystemwithdifferentcharacteristic,parameters,andcosts.Thispaperhighlightsthechronology,classification,characteristic,comparison,andassessmentofESSsandenergystoragesystemsdeployment.

Introduction

Engineersandpolicymakersareincreasinglyfocusingonenergystorageduetorisingattentionabouttheenvironmentalconsequencesoffossilfuelsandtheefficiencyanddurabilityofenergygridsworldwide.Infact,energystoragecanhelpresolvetheintermittentnatureofwindpowerandsolar;insomeinstances,itcanalsorespondquicklytosignificantdemandchanges,makethegridreactingquicklyandminimizetheneedtoinstallbackuppowerplants.Anenergystoragefacility’sefficiencyisdeterminedbyhowrapidlyitcanrespondtodemandchanges,itstotalcapacitytostoreenergy,therateofenergylostinthestorageprocess,andhoweasilyitcanberecharged.

SolarPVonlysuppliespowerthroughoutthedaywiththepeak.Totalproductionisdifferenteveryday.Windproductionisunpredictablebutcanbedistributed24hoursperday.However,averageperformancecanvarydramatically;forexample,inoneregionofGermanyalone,therecanbealmost20GWchangeoveraday[1].Intermittentgrowthinrenewableenergyleadstochallengesinmaintainingthebalancewithinsupplyanddemand.Theclosureofconventionalpowerplantsdecreasesthefrequencycontrolcapability,whichiswhyenergystorageisneeded.Energystoragecanalsosatisfytheneedforelectricityatpeaktimes,i.e.,whenairconditionersblastduringsummertimeorwhenhouseholdsturnonthelightsandappliancesatnight.Aspowerplantsneedtoscaleupproductiontomeettheincreasedenergyuseduringpeaktimes,electricitybecomesmorecostly.Energystorageprovideshighergridefficiencybecauseutilitiescanpurchaseelectricityatoff-peakhourswhenenergyischeapandsellittothegridwhenitis

moreindemand[2].

ContentfromthisworkmaybeusedunderthetermsoftheCreativeCommonsAttribution3.0licence.Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.

PublishedunderlicencebyIOPPublishingLtd 1

The1stInternationalConferenceonEngineeringandTechnology(ICoEngTech)2021 IOPPublishing

JournalofPhysics:ConferenceSeries

1962(2021)012035

doi:10.1088/1742-6596/1962/1/012035

PAGE

10

OverviewofEnergyStorageSystems

ChronologicalorderofEnergyStorageSystems

Theprocessesofelectro-chemicalsenergystoragestartedtodevelopveryrapidlyinthelate19thcentury.In1749,AmericanscientistBenjaminFranklinfirstusedtheword”battery”ashewasdoingexperimentswithelectricityusingasetoflinkedcapacitors.TheItalianphysicistAlessandroVoltainventedthefirstrealbatteryin1800[3].

Table1.ChronologicalorderofESS

Year

Types of

battery

Description

Ref

1800

Voltacell

TheinventionofthefirstbatteryledtotheVoltacell,whichused

abrinesolutionasanelectrolyteandhadalternatingcopperandzincdiscsdividedbycardboard.

[7,8]

1836

Danielcell

Regularlyidentifiedasazinc-copperbatterythattakesadvantage

ofaporousbarrierbetweentwoelectrolytes,theVoltacelldevelopedintotheDanielcell.JohnFredericDaniell,aBritishchemist,inventedtheDanielCell.

[9]

1866

Leclanche

cell

DanielcelltransformsintoaLeclanchecellinventedbyaFrench

engineercontaininganammoniumchlorideconductingsolution:theelectrolyte,anegativezincterminalandapositivemanganesedioxideterminal.

[10]

1859

Lead-acid

Thefirstrechargeablebatterybasedonlead-acidwasinventedby

theFrenchphysicianGastonPlant′e,astilluseddevice.Theywereallprimarybatteriesuntilthen,meaningtheywerenottypicallyrechargeable.

[7,8]

1899

Nickel–

cadmium(NiCd)

Thenickel-cadmium(NiCd)batteryusingnickelasthepositive

electrode(cathode)andcadmiumasthenegativeelectrode(anode)wasinventedbySweden’sWaldemarJungner.

[11]

1901

Nickel-iron

(NiFe)

ThomasEdisonreplacedcadmiumwithiron,whichwascalled

nickel-iron(NiFe).

[8,11]

1967

Nickel–metal

hydride,NiMH

Nickel-metal-hydridedevelopmentbeganin1967.Itactsasa

substituteforNiCdbecauseitonlyhasmildtoxicmetalsandprovideshigherspecificenergy.

[12]

1980

Li-ion

AmericanphysicistJohnBannisterGoodenoughinventedthe

lithium-ionnervoussystem.

[13]

1980

Lithium-

polymer

Thelithium-polymerbatteryinventioncameinthe1980s.Sony

integratedGoodenough’scathodeandacarbonanodeintotheworld’sfirstcommerciallithium-ionrechargeablebatteryin1991.

[14]

1954-

latest

Solarfuel

Solarfuels,inspiredbyenvironmentalconcerns,haverecently

gainedinterest.Thisisstillunderdevelopmentandstudy.Inthe1950s,BellLaboratoriesdiscoveredthatsemiconductingmaterialsweremorepowerfulthanselenium,suchassilicon.Theysucceededinmakingasolarcellthatwas6percentefficient.ThebrainsbehindthesiliconsolarcellatBellLabswereinventorsDarylChapin,CalvinFullerandGeraldPearson.

[15]

ThesefirstmeasureswereidentifiedwiththenamesofLuigiGalvani(1737-1798)andAlessandroContediVolta(1745-1827),whichremaininhistorythroughthewordsweusetoday:”galvanicelement”and”volt”.Galvanifoundthatifdeathmeetsvariousmetals,afroglegbeginstomove.Onthecontrary,Voltastudiedtheoutcomesobtainedwhencertain

saltsolutionsareinsertedintovariousmetals.Thelead/acid/leaddioxide(lead-acidbattery)mechanismwillnotbefoundwithoutthesetests[4].Table1showsthechronologyoftheenergystoragesystem.

ComparisonandcharacteristicofEnergyStorageSystem

Therefore,itiscrucialtocriticallyanalyzethefundamentalcharacteristicsofESSstocreatebenchmarksforselectingthebesttechnology.TheseESSscanalsobedefinedbytheirtechnicalspecifications,i.e.,maxpowerrating,dischargetime,energydensityandefficiency.Table2concentratesinESSscurrentlyproficientofgivingcriticalstoragecapacitiesofatleast20MW.AglossaryoftechnicaldataESSsisgiventohelpanybeginnerclearlyunderstandthecharacteristics[5,6].

Table2.ChronologicalorderofESS

MaxPower

Rating(MW)

Discharge

time

Max cycles

orlifetime

Energy

density(watt-hourperliter)

Efficiency

Pumpedhydro

3,000

4h-16h

30-60years

0.2-2

70-85%

Compressedair

1,000

2h-30h

20-40years

2-6

40-70%

Moltensalt

150

hours

30years

70-210

80-90%

Li-ionbattery

100

1min-8h

1,000-10,000

years

200-400

85-95%

Lead-acid

100

1min-8h

6-40years

50-80

80-90%

Flowbattery

100

hours

12,000-14,000

years

20-70

60-85%

Hydrogen

100

min-week

5-30years

600(atbar)

25-45%

Flywheel

20

secs-mins

20,000-

100,000years

20-80

70-95%

Maxpowerrating(MWorkW):Maxpowerratingforastoragesystemdeterminestherateofenergystorageinthestoragemedium.Itisalsocommonlydeterminedasaveragevalueandapeakvaluethatisoftenusedtoindicatemaximumpower,Pmax(W).

Dischargetime(energyperunit):Theamountoftimetakentofullydischargeenergyatitsratedpowerbythestoragesystemiscalleddischargetime.Themaximum-powerforthedurationofthedischarge,τ(s)=Wst/Pmax,whereWstistotalenergystoredandPmaxismaximumdischargepower.

Maxcycles/Lifetime(cycles/years):Thelifetimeforastoragesystemistoestimateitsperformanceandbespecifiedasthenumberofyearsaccordingtoitsratedcapacityandratedpower.

Energydensity(kWh/L):Theamountofenergythatcanbecontainedinthestoragematerialperunitvolumeisreferredtoastheenergydensity.

Efficiency(%):TheratiobetweenenergythattheESSdischargedandtheamountofenergycontainedinitisreferredtoastheESSdischargeefficiency.Theratioofreleasedenergyandstoredenergyisn=Wut/Wst,whereWutisusablereleasedenergyandWstistotalenergystored.

ClassificationofESSs

Thegrowingneedforenergystoragehaspushedintoanever-endingefforttofindnewstoragesystemsolutionsthataremoreeffectiveandcatertospecificrequirements.Therearemanytypes

ofESStechnologiescoexistingandcanbeclassifiedonthebasisoftheirparticularfunctions,responsetime,theformofenergystored,storagedurationandetc.,[5].Theenergystoragesystemmaybeusedforarangeofapplications.Someofthemmaybepreciselyselectedforaparticularapplication.Ontheotherhand,someothersaretheframeworkinquestioninabroaderframework.

TheESSclassificationisbroadlydeterminedbasedontheformofconvertedenergy.Energycanbeconvertedeitherintheformofthermal,chemical,mechanical,orelectrochemicalenergyormagneticorelectricalfields.Figure1illustratestheESS’sclassification.

Figure1.Theclassificationofenergystoragesystems.

ComparisonandAssessmentofESSs

ManystudieshavebeenperformedspecificallyforthepurposeofdrawingupathoroughcomparisonbetweenthevarioustypesofESS.

Comparisonbetweenpowerdensityandenergydensity

Figure2showsthecomparisonofESStechnologiesbetweenenergydensityandpowerdensity.Whenthedensityofenergyandpowerismoresignificant,thestoragesystem’svolumeislower.Onthetopright,highlydenseESStechnologieswhichareidealformobileapplications.Theextensiveandhigh-volumestoragesystemislocatedatthebottomleft.Flowbatteries,CAESandPHS,havealowenergydensityandareextensivearea.Thevolumeofitconsumesmorestoragesystems.Ontheotherhand,Li-ionbatterieshavealargeenergydensityandahigh-powerdensity,soLi-ioniscurrentlyusedinmanyapplications.

Figure2.ComparingtheESStechnologiesbetweenpowerdensityandenergydensity[5,16].

Comparisonbetweenthesystempowerratinganddischargetime

Figure3showstheapplicationoftheESSsgenerallyclassifiedintolarge,medium,andsmallscalesbasedonthedischargetimeatratedpowerandpowerrating.

Electrochemicalstoragesystemssuchaslithium(Li-ion),lead-acidandNaSbatteriesareprimarilyappropriateforapplicationswithamediumdischargetimeofminutestohours.Forashortdischargetimeatratedpowerapplications,alltechnologiesforhigh-powerstoragesuchasFlywheels,SupercapacitorandSMESaresuitable.PHSandCAESarelocatedbetweenmediumdischargetimesofstoragesystemandlargescalefordischargetimesatratedpower.

ESSscurrentlyavailableforuseinapplicationsinvolvingpowerqualityareSupercapacitors,Ni-Cd,lead-acidbatteryandLi-ionbattery,andFlywheelsalsoappeartobeapromisingsystemforthoseapplications.

Comparisonoflifeexpectancyandefficiencyofenergy

Figure4representsthecomparisonbetweenlifeexpectancyandenergyefficiencyofESSs.Beforechoosingastoragetechnology,thistwo-parameterisvitaltoconsider,amongothers,asitaffectsthetotalstoragecosts.

BothESShigh-powertechnologies,i.e.,FlywheelsandECCapacitors,aredistinguishedbytheirperformance,rangingfrom90-95%and84-97%,respectively.Currently,diabaticCAESsystemshavealowefficiencyoflessthan55%.However,thenewadiabaticCAESplantispresumedtoachieveanefficiencyofaround70%[16].Li-ionbatterieshavethehighestefficiencyoftheelectrochemicalstoragesystem,estimatedtobeover90%oreven97%.PHSsystemswillrunat70-87%efficiency,andtheuseofanadjustablespeedmachinecanincreaseefficiencyinthefuture.

LifeexpectancycanbegiveneitherincyclesoryearsforESSs.Intraditionalbattery

Figure3.ComparisonofESSsregardingtheratingofthepowersystemandtimeofdischargeatratedpower[5,17].

Figure4.Comparisonbetweenlifeexpectancyandenergyefficiency[17].

technology,lead-acidbatteriesintheorderof2000cycleshavethelongestcyclelife.however,morecyclescanbereachedbyLi-onandNASthanlead-acidbatteries.CAES,PHSandflywheelsaretechnologieswithaverylong-lifecycleofbetween10,000and30,000cycles,while

ECCapacitorsareabout100,000cycles[5].

ComparisonoftheinvestmentcostofESSs

TheinvestmentcostsofESSsarecomparedinFigure5.Storage-relatedinvestmentcostsareasignificanteconomicparameterandimpacttheoverallcostofenergyproduction.Hence,certaintypesofstoragesystemscanonlybecomeprofitableifsuppliedwithacertainminimumofresources.Toachieveaprecisecostanalysis,thetotalcostofthesystemmustbeappraised.

Figure5.ComparisonbetweenCapitalCostperUnitEnergyandCapitalCostperUnitPower[6].

Concerningthecapitalcostperunitofenergy,ECcapacitorsandhigh-powerflywheelshavethegreatestinvestmentcostofsomethousand/kWh.Atthesametime,metal-airbatteriesarethelower-pricedstorageoption.CAESalsohaveameagrecostforthestoragesystem.Long-durationflywheels,Li-ionandthezinc-airbatteryaremost-costlytechnologiesinthecapitalcostperunitpower.Apartfromlong-durationECcapacitorsandhigh-powerflywheels,high-powerECcapacitorsarethemostaffordable.

Datain2018andpredictionin2025forcostandparameters(powerconversionsystem,capitalcost–energycapacity,thebalanceofplant,constructionandcommissioning)rangesbytechnologiesisshowninFigure6[18].

Comparisonbasedonspecificpowerandenergy

Betweentechnologiesforhigh-power,thecapacitorhasthehighestspecificpowerofmorethan100,000(W/kg),whileTESisthelowestspecificpowerwhichis10-30(W/kg)[5].Intherangeof800-10,000(Wh/kg),thefuelcellexhibitsexceptionallyhighspecificenergy.Higherspecificenergygivesanimpactonstorageweight.Figure7showsthecomparisonbetweenspecificpowerandenergy.

Figure6.Overviewofthe2018dataand2025forecastscompiledbytechnologyforparameterranges[18].

Figure7.Comparisonbetweenspecificpowerandenergy.

DeploymentofESSs

Forthefirst-everintenyears,theglobalstoragemarketisdiminishing.In2019,electricitysystemsworldwidehadadded2.9GW’sstoragecapacity,nearly30%lowerthanin2018.Thereasonsbehindthisbottom-linemarkhowmuchstorage,presentinjustafewkeymarketsandprofoundlyreliantbasedonpolicysupport,continuesasanearly-stagetechnology.However,ifadequatelydeployed,energystorageprovidessystemoperatorswithflexibleandquickresponsecapabilitytoefficientlymanagegenerationandloadvariability.ESSshaverecentlyundergoneanaccelerateddecreaseincost,reflectingthelearningcrescentsseenoverthepastdecadefromwindandsolargeneration.

Figure8.The2013-2019annualdeploymentofESSbythecountry[19].

Theinstallmentofenergystoragehasstartedtogainmarketpopularityoverthelastfewyears.Figure8showstheIEA’scurrentdata,whichillustratesthestrideofbatteryenergystoragedeployments,exceptin2019.2016isthefirstyearinwhichtheannualdeploymentforenergystoragehasreached1GW.InKorea,annualdeploymentsdecreasedby80percentafterthe2018reportingyearwhenKoreaaccountedforone-thirdofallinstalledcapacityglobally.Thedecreasearosefromincreasingconcernin2018overmultiplefiresatstorageplantsinagrid-scale.Whilealarge-scalereviewofthefiresandsafetymeasureswascarriedout,in2019,fivemorefiresbrokeout.Theco-locationofREgenerationfacilitieswithenergystorageassets,whichhelpsstabilizegenerationandassuresmorerobustcapacityduringhighdemandtimes,hasbeenacriticaldriverofenergystoragegrowth.Large-scaleauctionwitha1.2GWofsolar-plus-storage,Indiaexpresslystartedrewardingthisapplicationin2019,requirethestoragecapacityfor50%oftheinstalledgeneration.Singaporehasdeclaredagoalfor2025,whichis200MWofstorage.IHSMarkit’sEnergyStorageBusiness,aglobalinformationproviderheadquarteredinLondon,recordsglobalinstallationsrisingbymorethan5GWin2020[20].TheothersubstantialpotentialimplementationofESSisinthemobilecommunicationarea.Thestudies

in[21–28]considercloudradioaccessnetwork(C-RAN),wheretheremoteradioheads(RRHs)areequippedwithrenewableenergyresourcesandcantradeenergywiththegrid.However,intheirproposedsystems,RRHsarenotinstalledwithfrequentlyrechargeablestoragedevices.ESSscanbeinstalledatthemasterbasestation(MBS)intheC-RANorcanbeemployedattheRRHswiththeadvancementofbatterytechnologies.Theselfenergystoragemanagementisexpectedtocontrolunequallocalrenewableenergygenerationtomatchtheenergyrequestbyreceivingterminalsthatalwayschangeovertime.

Conclusion

ViewingthepreviousworkonESSsandthereliabilityofthepowergrid,thispapercoversagreatdealofcriticalknowledgeonESSs.TheworldisobligedtobeenticedfurthertowardsESSstomovetowardsrenewableenergysources,whichwillneedafullunderstandingofthistechnology’sperspectives.Severaltypesoftechnicalparametershavebeencompared,whichwillencourageaspecifictypebasedonthemainspecifications.AbriefinsighthasbeenpresentedabouttheannualdeploymentofESS.ThemostappealingsolutionandlongtermforotherstoragesystemscompetingtodaymightnotalwaysbetheESS.However,thisimpliesthateveniftheflexibleness’sinvestmentsignalsarecurrentlylacking,assessingtheregionalandcountrypotentialwillbeimportantinthelongterm.

References

RolandBerger,“RolandBergyFocus:Businessmodelsinenergystorage,”2017.

A.Zablocki,“FactSheet:EnergyStorage(2019)—WhitePapers—EESI,”EnvironmentalandEnergyStudyInstitute,2019.[Online].Available:h

ttps:///papers/view/energy-storage-

2019.[Accessed:09-Jul-2020].

T.C.JoseAlarcoAndPeterTalbot,“Thehistoryanddevelopmentofbatteries,”pp.1–5,2018.

E.Danila,“HistoryoftheFirstEnergyStorageSystems,”Conference,2010.[Online].Available:h

ttps:///publication/271371039

HISTORYOFTHEFIRSTENERGYSTORAGESYSTEMS.[Accessed:24-Jan-2021].

E.Hossain,H.M.R.Faruque,M.S.H.Sunny,N.Mohammad,andN.Nawar,“Acomprehensivereviewonenergystoragesystems:Types,comparison,currentscenario,applications,barriers,andpotentialsolutions,policies,andfutureprospects,”Energies,vol.13,no.14.MDPIAG,01-Jul-2020.

H.Ibrahim,A.Ilinca,andJ.Perron,“Energystoragesystems-Characteristicsandcomparisons,”RenewableandSustainableEnergyReviews,vol.12,no.5.Pergamon,pp.1221–1250,01-Jun-2008.

M.S.Whittingham,“History,evolution,andfuturestatusofenergystorage,”inProceedingsoftheIEEE,2012,vol.100,no.SPLCONTENT,pp.1518–1534.

BatteryUniverisity,“InformationontheInventionoftheBattery-BatteryUniversity,”2016.[Online].Available:

/learn/article/when-was-the-battery-invented.

[Accessed:24-Jan-2021].

X.Dong,Y.Wang,andY.Xia,“Re-buildingDaniellcellwithaLi-ionexchangefilm,”Sci.Rep.,vol.4,2014.

T.E.ofE.”GeorgesL.E.B.Britannica,“GeorgesLeclanch′e—Frenchengineer—Britannica.”[Online].Available:h

ttps:///biography/Georges-Lec

lanc

he-ref272622.

[Accessed:24-Jan-2021].

BatteryAssociationofJapan,“Thehistoryofthebattery4)Thelead-acidbattery(secondarybattery),”2015.[Online].Available:

http://www.baj.or.jp/e/knowledge/history03.html.

[Accessed:24-Jan-2021].

I.Buchmann,“Nickel-basedBatteriesInformation,”Batteryuniversity,2011.[Online].Available:/learn/article/nickel-based-batteries.[Accessed:24-Jan-2021].

N.O.T.EnoughandF.O.R.Goodenough,“Themanwhobroughtusthelithium-ionbatteryattheageof57hasanideaforanewoneat92,”pp.1–15,2015.

TANKITHOONG,“Historyoftherechargeablebattery—TheStar.”[Online].Available:h

ttps://.m

y/tec

h/tech-news/2016/01/25/history

oftherechargeablebattery.[Accessed:24-Jan-2021].

ElizabethChuandD.LawrenceTarazano,“ABriefHistoryofSolarPanels—Sponsored—SmithsonianMagazine.”[Online].Available:h

ttps:///sponsored/brief-history-solar-panels-

180972006/.[Accessed:31-Jan-2021].

A.Chatzivasileiadi,E.Ampatzi,andI.Knight,“Characteristicsofelectricalenergystoragetechnologiesandtheirapplicationsinbuildings.”

M.S.GuneyandY.Tepe,“Classificationandassessmentofenergystoragesystems,”RenewableandSustainableEnergyReviews,vol.75.ElsevierLtd,pp.1187–1197,01-Aug-2017.

K.Mongirdetal.,“EnergyStorageTechnologyandCostCharacterizationReport,”2019

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論